Linked data and semantic web technologies to model context information for policy-making

Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2021-04, Vol.12 (4), p.4395-4406
1. Verfasser: Carbonaro, Antonella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4406
container_issue 4
container_start_page 4395
container_title Journal of ambient intelligence and humanized computing
container_volume 12
creator Carbonaro, Antonella
description Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation.
doi_str_mv 10.1007/s12652-019-01341-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920167648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920167648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXFdz82q7lMEXDLhRcBcyaTpmpk3GJoP23xut6M4Ll3sW55wLH0LnQC6BkPIqApWCFgTqvIxDMR6hGVSyKgRwcfyrWXmKFjFuSR5WMwCYoZeV8zvb4EYnjbVvcLS99skZ_G7XOFnz6kMXNs5GnALuQ2M7bIJP9iNh59sw9Dq54HFWeB86Z8ai1zvnN2fopNVdtIufO0fPtzdPy_ti9Xj3sLxeFYYDpELoluvSitaY2hgBTUnXppa1kKyBCqAiWoCpmW6JBMm0saxhgnFOKYDghs3RxdS7H8LbwcaktuEw-PxS0ZoSkKXkVXbRyWWGEONgW7UfXK-HUQFRXxDVBFFliOobohpziE2hmM1-Y4e_6n9Sn77NdRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920167648</pqid></control><display><type>article</type><title>Linked data and semantic web technologies to model context information for policy-making</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Carbonaro, Antonella</creator><creatorcontrib>Carbonaro, Antonella</creatorcontrib><description>Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-019-01341-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Data models ; Datasets ; Education ; Engineering ; Government ; Interoperability ; Knowledge representation ; Linked Data ; Open data ; Original Research ; Robotics and Automation ; Semantic web ; Semantics ; Students ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2021-04, Vol.12 (4), p.4395-4406</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</citedby><cites>FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</cites><orcidid>0000-0002-3890-4852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-019-01341-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920167648?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Carbonaro, Antonella</creatorcontrib><title>Linked data and semantic web technologies to model context information for policy-making</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Data models</subject><subject>Datasets</subject><subject>Education</subject><subject>Engineering</subject><subject>Government</subject><subject>Interoperability</subject><subject>Knowledge representation</subject><subject>Linked Data</subject><subject>Open data</subject><subject>Original Research</subject><subject>Robotics and Automation</subject><subject>Semantic web</subject><subject>Semantics</subject><subject>Students</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXFdz82q7lMEXDLhRcBcyaTpmpk3GJoP23xut6M4Ll3sW55wLH0LnQC6BkPIqApWCFgTqvIxDMR6hGVSyKgRwcfyrWXmKFjFuSR5WMwCYoZeV8zvb4EYnjbVvcLS99skZ_G7XOFnz6kMXNs5GnALuQ2M7bIJP9iNh59sw9Dq54HFWeB86Z8ai1zvnN2fopNVdtIufO0fPtzdPy_ti9Xj3sLxeFYYDpELoluvSitaY2hgBTUnXppa1kKyBCqAiWoCpmW6JBMm0saxhgnFOKYDghs3RxdS7H8LbwcaktuEw-PxS0ZoSkKXkVXbRyWWGEONgW7UfXK-HUQFRXxDVBFFliOobohpziE2hmM1-Y4e_6n9Sn77NdRM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Carbonaro, Antonella</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3890-4852</orcidid></search><sort><creationdate>20210401</creationdate><title>Linked data and semantic web technologies to model context information for policy-making</title><author>Carbonaro, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Data models</topic><topic>Datasets</topic><topic>Education</topic><topic>Engineering</topic><topic>Government</topic><topic>Interoperability</topic><topic>Knowledge representation</topic><topic>Linked Data</topic><topic>Open data</topic><topic>Original Research</topic><topic>Robotics and Automation</topic><topic>Semantic web</topic><topic>Semantics</topic><topic>Students</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carbonaro, Antonella</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carbonaro, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linked data and semantic web technologies to model context information for policy-making</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>12</volume><issue>4</issue><spage>4395</spage><epage>4406</epage><pages>4395-4406</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-019-01341-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3890-4852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2021-04, Vol.12 (4), p.4395-4406
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2920167648
source SpringerLink Journals; ProQuest Central
subjects Artificial Intelligence
Computational Intelligence
Data models
Datasets
Education
Engineering
Government
Interoperability
Knowledge representation
Linked Data
Open data
Original Research
Robotics and Automation
Semantic web
Semantics
Students
User Interfaces and Human Computer Interaction
title Linked data and semantic web technologies to model context information for policy-making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linked%20data%20and%20semantic%20web%20technologies%20to%20model%20context%20information%20for%20policy-making&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Carbonaro,%20Antonella&rft.date=2021-04-01&rft.volume=12&rft.issue=4&rft.spage=4395&rft.epage=4406&rft.pages=4395-4406&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-019-01341-y&rft_dat=%3Cproquest_cross%3E2920167648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920167648&rft_id=info:pmid/&rfr_iscdi=true