Linked data and semantic web technologies to model context information for policy-making
Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes t...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2021-04, Vol.12 (4), p.4395-4406 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4406 |
---|---|
container_issue | 4 |
container_start_page | 4395 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 12 |
creator | Carbonaro, Antonella |
description | Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation. |
doi_str_mv | 10.1007/s12652-019-01341-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920167648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920167648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXFdz82q7lMEXDLhRcBcyaTpmpk3GJoP23xut6M4Ll3sW55wLH0LnQC6BkPIqApWCFgTqvIxDMR6hGVSyKgRwcfyrWXmKFjFuSR5WMwCYoZeV8zvb4EYnjbVvcLS99skZ_G7XOFnz6kMXNs5GnALuQ2M7bIJP9iNh59sw9Dq54HFWeB86Z8ai1zvnN2fopNVdtIufO0fPtzdPy_ti9Xj3sLxeFYYDpELoluvSitaY2hgBTUnXppa1kKyBCqAiWoCpmW6JBMm0saxhgnFOKYDghs3RxdS7H8LbwcaktuEw-PxS0ZoSkKXkVXbRyWWGEONgW7UfXK-HUQFRXxDVBFFliOobohpziE2hmM1-Y4e_6n9Sn77NdRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920167648</pqid></control><display><type>article</type><title>Linked data and semantic web technologies to model context information for policy-making</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Carbonaro, Antonella</creator><creatorcontrib>Carbonaro, Antonella</creatorcontrib><description>Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-019-01341-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Data models ; Datasets ; Education ; Engineering ; Government ; Interoperability ; Knowledge representation ; Linked Data ; Open data ; Original Research ; Robotics and Automation ; Semantic web ; Semantics ; Students ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2021-04, Vol.12 (4), p.4395-4406</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</citedby><cites>FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</cites><orcidid>0000-0002-3890-4852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-019-01341-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920167648?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Carbonaro, Antonella</creatorcontrib><title>Linked data and semantic web technologies to model context information for policy-making</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Data models</subject><subject>Datasets</subject><subject>Education</subject><subject>Engineering</subject><subject>Government</subject><subject>Interoperability</subject><subject>Knowledge representation</subject><subject>Linked Data</subject><subject>Open data</subject><subject>Original Research</subject><subject>Robotics and Automation</subject><subject>Semantic web</subject><subject>Semantics</subject><subject>Students</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXFdz82q7lMEXDLhRcBcyaTpmpk3GJoP23xut6M4Ll3sW55wLH0LnQC6BkPIqApWCFgTqvIxDMR6hGVSyKgRwcfyrWXmKFjFuSR5WMwCYoZeV8zvb4EYnjbVvcLS99skZ_G7XOFnz6kMXNs5GnALuQ2M7bIJP9iNh59sw9Dq54HFWeB86Z8ai1zvnN2fopNVdtIufO0fPtzdPy_ti9Xj3sLxeFYYDpELoluvSitaY2hgBTUnXppa1kKyBCqAiWoCpmW6JBMm0saxhgnFOKYDghs3RxdS7H8LbwcaktuEw-PxS0ZoSkKXkVXbRyWWGEONgW7UfXK-HUQFRXxDVBFFliOobohpziE2hmM1-Y4e_6n9Sn77NdRM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Carbonaro, Antonella</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3890-4852</orcidid></search><sort><creationdate>20210401</creationdate><title>Linked data and semantic web technologies to model context information for policy-making</title><author>Carbonaro, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-5af4a7e5fcc9cc51d72bc969563d181180a51c93af06163ace3d35344221154c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Data models</topic><topic>Datasets</topic><topic>Education</topic><topic>Engineering</topic><topic>Government</topic><topic>Interoperability</topic><topic>Knowledge representation</topic><topic>Linked Data</topic><topic>Open data</topic><topic>Original Research</topic><topic>Robotics and Automation</topic><topic>Semantic web</topic><topic>Semantics</topic><topic>Students</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carbonaro, Antonella</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carbonaro, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linked data and semantic web technologies to model context information for policy-making</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>12</volume><issue>4</issue><spage>4395</spage><epage>4406</epage><pages>4395-4406</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies on the representation and meaning of knowledge related to the publishing community makes it difficult to compare and use them. The paper proposes the use of semantic technologies and linked open data in order to ensure standardized frameworks for the representation of concepts in policy-making. The low-level data can thus be transformed into an enriched information model that allows its reuse and a logical reasoning on the knowledge representation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-019-01341-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3890-4852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2021-04, Vol.12 (4), p.4395-4406 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_2920167648 |
source | SpringerLink Journals; ProQuest Central |
subjects | Artificial Intelligence Computational Intelligence Data models Datasets Education Engineering Government Interoperability Knowledge representation Linked Data Open data Original Research Robotics and Automation Semantic web Semantics Students User Interfaces and Human Computer Interaction |
title | Linked data and semantic web technologies to model context information for policy-making |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linked%20data%20and%20semantic%20web%20technologies%20to%20model%20context%20information%20for%20policy-making&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Carbonaro,%20Antonella&rft.date=2021-04-01&rft.volume=12&rft.issue=4&rft.spage=4395&rft.epage=4406&rft.pages=4395-4406&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-019-01341-y&rft_dat=%3Cproquest_cross%3E2920167648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920167648&rft_id=info:pmid/&rfr_iscdi=true |