Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder

In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive computation 2019-08, Vol.11 (4), p.545-559
Hauptverfasser: Sachnev, Vasily, Suresh, Sundaram, Sundararajan, Narasimman, Mahanand, Belathur Suresh, Azeem, Muhammad W., Saraswathi, Saras
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue 4
container_start_page 545
container_title Cognitive computation
container_volume 11
creator Sachnev, Vasily
Suresh, Sundaram
Sundararajan, Narasimman
Mahanand, Belathur Suresh
Azeem, Muhammad W.
Saraswathi, Saras
description In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.
doi_str_mv 10.1007/s12559-019-09636-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920165210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920165210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e446ca6528278592a3c2f24e492df667f0dcf74e4798f3c39f667abfea6293f03</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwueY_Oxm90cS1utUBGqnkOavpTUdlOTbKH_3l1X9Obh8WYeM_NgELql5J4SUo4iZUUhMaHtSMEFJmdoQCshsJQiP__FhbhEVzFuCRGFLNgAhedmlxxewsb5Olu6-IFfoY4uuSNkE7-pezSrI-xXOwiZ9SEbG9MEnSCbQgKTOqe32TglqDuCp2CdcWk0Px0g6FZwdOmUTV30YQ3hGl1YvYtw87OH6P1h9jaZ48XL49NkvMCGU5kw5LkwWhSsYmVVSKa5YZblkEu2tkKUlqyNLVteyspyw2V31CsLWjDJLeFDdNfnHoL_bCAmtfVNqNuXiklGaBtNOxXrVSb4GANYdQhur8NJUaK6blXfrWq7Vd_dqs7Ee1NsxfUGwl_0P64vcW1-Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920165210</pqid></control><display><type>article</type><title>Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Sachnev, Vasily ; Suresh, Sundaram ; Sundararajan, Narasimman ; Mahanand, Belathur Suresh ; Azeem, Muhammad W. ; Saraswathi, Saras</creator><creatorcontrib>Sachnev, Vasily ; Suresh, Sundaram ; Sundararajan, Narasimman ; Mahanand, Belathur Suresh ; Azeem, Muhammad W. ; Saraswathi, Saras</creatorcontrib><description>In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-019-09636-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Attention deficit hyperactivity disorder ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Classification ; Classifiers ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Genetic algorithms ; Hippocampus ; Hyperactivity ; Machine learning ; Magnetic resonance imaging ; Neurosciences ; Performance evaluation ; Risk ; Support vector machines</subject><ispartof>Cognitive computation, 2019-08, Vol.11 (4), p.545-559</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e446ca6528278592a3c2f24e492df667f0dcf74e4798f3c39f667abfea6293f03</citedby><cites>FETCH-LOGICAL-c319t-e446ca6528278592a3c2f24e492df667f0dcf74e4798f3c39f667abfea6293f03</cites><orcidid>0000-0001-7063-5069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-019-09636-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920165210?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Sachnev, Vasily</creatorcontrib><creatorcontrib>Suresh, Sundaram</creatorcontrib><creatorcontrib>Sundararajan, Narasimman</creatorcontrib><creatorcontrib>Mahanand, Belathur Suresh</creatorcontrib><creatorcontrib>Azeem, Muhammad W.</creatorcontrib><creatorcontrib>Saraswathi, Saras</creatorcontrib><title>Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Genetic algorithms</subject><subject>Hippocampus</subject><subject>Hyperactivity</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Neurosciences</subject><subject>Performance evaluation</subject><subject>Risk</subject><subject>Support vector machines</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEUDKJgrf4BTwueY_Oxm90cS1utUBGqnkOavpTUdlOTbKH_3l1X9Obh8WYeM_NgELql5J4SUo4iZUUhMaHtSMEFJmdoQCshsJQiP__FhbhEVzFuCRGFLNgAhedmlxxewsb5Olu6-IFfoY4uuSNkE7-pezSrI-xXOwiZ9SEbG9MEnSCbQgKTOqe32TglqDuCp2CdcWk0Px0g6FZwdOmUTV30YQ3hGl1YvYtw87OH6P1h9jaZ48XL49NkvMCGU5kw5LkwWhSsYmVVSKa5YZblkEu2tkKUlqyNLVteyspyw2V31CsLWjDJLeFDdNfnHoL_bCAmtfVNqNuXiklGaBtNOxXrVSb4GANYdQhur8NJUaK6blXfrWq7Vd_dqs7Ee1NsxfUGwl_0P64vcW1-Jg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Sachnev, Vasily</creator><creator>Suresh, Sundaram</creator><creator>Sundararajan, Narasimman</creator><creator>Mahanand, Belathur Suresh</creator><creator>Azeem, Muhammad W.</creator><creator>Saraswathi, Saras</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7063-5069</orcidid></search><sort><creationdate>20190801</creationdate><title>Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder</title><author>Sachnev, Vasily ; Suresh, Sundaram ; Sundararajan, Narasimman ; Mahanand, Belathur Suresh ; Azeem, Muhammad W. ; Saraswathi, Saras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e446ca6528278592a3c2f24e492df667f0dcf74e4798f3c39f667abfea6293f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Genetic algorithms</topic><topic>Hippocampus</topic><topic>Hyperactivity</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Neurosciences</topic><topic>Performance evaluation</topic><topic>Risk</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachnev, Vasily</creatorcontrib><creatorcontrib>Suresh, Sundaram</creatorcontrib><creatorcontrib>Sundararajan, Narasimman</creatorcontrib><creatorcontrib>Mahanand, Belathur Suresh</creatorcontrib><creatorcontrib>Azeem, Muhammad W.</creatorcontrib><creatorcontrib>Saraswathi, Saras</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sachnev, Vasily</au><au>Suresh, Sundaram</au><au>Sundararajan, Narasimman</au><au>Mahanand, Belathur Suresh</au><au>Azeem, Muhammad W.</au><au>Saraswathi, Saras</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>11</volume><issue>4</issue><spage>545</spage><epage>559</epage><pages>545-559</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12559-019-09636-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7063-5069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-9956
ispartof Cognitive computation, 2019-08, Vol.11 (4), p.545-559
issn 1866-9956
1866-9964
language eng
recordid cdi_proquest_journals_2920165210
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Artificial neural networks
Attention deficit hyperactivity disorder
Biomedical and Life Sciences
Biomedicine
Brain
Classification
Classifiers
Computation by Abstract Devices
Computational Biology/Bioinformatics
Genetic algorithms
Hippocampus
Hyperactivity
Machine learning
Magnetic resonance imaging
Neurosciences
Performance evaluation
Risk
Support vector machines
title Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Region%20Risk-Sensitive%20Cognitive%20Ensembler%20for%20Accurate%20Detection%20of%20Attention-Deficit/Hyperactivity%20Disorder&rft.jtitle=Cognitive%20computation&rft.au=Sachnev,%20Vasily&rft.date=2019-08-01&rft.volume=11&rft.issue=4&rft.spage=545&rft.epage=559&rft.pages=545-559&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-019-09636-0&rft_dat=%3Cproquest_cross%3E2920165210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920165210&rft_id=info:pmid/&rfr_iscdi=true