Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment

. In this study, vibration of a rotating composite blade with piezoelectric layers subjected to a tip mass in hygrothermal environment is investigated. The general composite equations for the single layer materials are expanded under varying temperature and humidity concentrations. The governing equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2019-11, Vol.134 (11), p.556, Article 556
Hauptverfasser: Arabjamaloei, Zahra, Mofidi, Mohammadreza, Hosseini, Mohammad, Bahaadini, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 556
container_title European physical journal plus
container_volume 134
creator Arabjamaloei, Zahra
Mofidi, Mohammadreza
Hosseini, Mohammad
Bahaadini, Reza
description . In this study, vibration of a rotating composite blade with piezoelectric layers subjected to a tip mass in hygrothermal environment is investigated. The general composite equations for the single layer materials are expanded under varying temperature and humidity concentrations. The governing equations are derived based on the Hamilton principle based on the Euler-Bernoulli beam theory. Applying Galerkin’s procedure, the resulting equations are converted into a set of eigenvalue equations. The effects of temperature, humidity, angular velocity, fiber orientation angle, voltage and piezoelectric layers on the natural frequency of system are explored. The results show that by increasing the angular velocity, the natural frequencies increases. It was also found that increasing temperature and humidity causes a drop in the non-dimensional natural frequency. Besides, it can be concluded that heat and humidity have significant effects on the natural frequency of rotating composite blades. Applying positive and negative voltages results in a raise and drop in the natural frequency, respectively. It was also found that as the angular velocity of the composite beam increases, the non-dimensional natural frequency decreases. Furthermore, the lowest natural frequency is achieved when the tip mass is located at the end of the beam. The results show that as the fiber orientation angle increases, the natural frequencies increase which is related to enhancing the bending stiffness of the composite blades.
doi_str_mv 10.1140/epjp/i2019-12910-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920054376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920054376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1d27261ab8cc275b423de43801681496f65da89dc94d14f91f392dff3daa98cf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA67F5zXSylOILCm7Ubcjk0aZMkzFJlfHXm1pBV97NvVzOd7j3AHCJ0TXGDM3NsB3mjiDMK0w4RhU_AROCOapqxtjpn_kczFLaolKMY8bZBJhX10WZXfBQetmPySUYLIwhl6VfQxV2Q0guG9j1UpsEP1zewMGZz2B6o3J0CvZyNDFB5-FmXBdyY-JO9tD4dxeD3xmfL8CZlX0ys58-BS93t8_Lh2r1dP-4vFlVimKeK6zJgjRYdq1SZFF3jFBtGG0RbtpybmObWsuWa8WZxsxybCkn2lqqpeStsnQKro6-Qwxve5Oy2IZ9LH8lQThBqGZ00RQVOapUDClFY8UQ3U7GUWAkDomKQ6LiO1HxnajgBaJHKBWxX5v4a_0P9QXTBH2D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920054376</pqid></control><display><type>article</type><title>Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Arabjamaloei, Zahra ; Mofidi, Mohammadreza ; Hosseini, Mohammad ; Bahaadini, Reza</creator><creatorcontrib>Arabjamaloei, Zahra ; Mofidi, Mohammadreza ; Hosseini, Mohammad ; Bahaadini, Reza</creatorcontrib><description>. In this study, vibration of a rotating composite blade with piezoelectric layers subjected to a tip mass in hygrothermal environment is investigated. The general composite equations for the single layer materials are expanded under varying temperature and humidity concentrations. The governing equations are derived based on the Hamilton principle based on the Euler-Bernoulli beam theory. Applying Galerkin’s procedure, the resulting equations are converted into a set of eigenvalue equations. The effects of temperature, humidity, angular velocity, fiber orientation angle, voltage and piezoelectric layers on the natural frequency of system are explored. The results show that by increasing the angular velocity, the natural frequencies increases. It was also found that increasing temperature and humidity causes a drop in the non-dimensional natural frequency. Besides, it can be concluded that heat and humidity have significant effects on the natural frequency of rotating composite blades. Applying positive and negative voltages results in a raise and drop in the natural frequency, respectively. It was also found that as the angular velocity of the composite beam increases, the non-dimensional natural frequency decreases. Furthermore, the lowest natural frequency is achieved when the tip mass is located at the end of the beam. The results show that as the fiber orientation angle increases, the natural frequencies increase which is related to enhancing the bending stiffness of the composite blades.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2019-12910-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angular velocity ; Applied and Technical Physics ; Atomic ; Beam theory (structures) ; Blades ; Complex Systems ; Composite beams ; Condensed Matter Physics ; Eigenvalues ; Euler-Bernoulli beams ; Fiber orientation ; Hamilton's principle ; Humidity ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Piezoelectricity ; Regular Article ; Resonant frequencies ; Rotation ; Temperature effects ; Theoretical ; Two dimensional materials ; Vibration analysis</subject><ispartof>European physical journal plus, 2019-11, Vol.134 (11), p.556, Article 556</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1d27261ab8cc275b423de43801681496f65da89dc94d14f91f392dff3daa98cf3</citedby><cites>FETCH-LOGICAL-c319t-1d27261ab8cc275b423de43801681496f65da89dc94d14f91f392dff3daa98cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2019-12910-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920054376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Arabjamaloei, Zahra</creatorcontrib><creatorcontrib>Mofidi, Mohammadreza</creatorcontrib><creatorcontrib>Hosseini, Mohammad</creatorcontrib><creatorcontrib>Bahaadini, Reza</creatorcontrib><title>Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In this study, vibration of a rotating composite blade with piezoelectric layers subjected to a tip mass in hygrothermal environment is investigated. The general composite equations for the single layer materials are expanded under varying temperature and humidity concentrations. The governing equations are derived based on the Hamilton principle based on the Euler-Bernoulli beam theory. Applying Galerkin’s procedure, the resulting equations are converted into a set of eigenvalue equations. The effects of temperature, humidity, angular velocity, fiber orientation angle, voltage and piezoelectric layers on the natural frequency of system are explored. The results show that by increasing the angular velocity, the natural frequencies increases. It was also found that increasing temperature and humidity causes a drop in the non-dimensional natural frequency. Besides, it can be concluded that heat and humidity have significant effects on the natural frequency of rotating composite blades. Applying positive and negative voltages results in a raise and drop in the natural frequency, respectively. It was also found that as the angular velocity of the composite beam increases, the non-dimensional natural frequency decreases. Furthermore, the lowest natural frequency is achieved when the tip mass is located at the end of the beam. The results show that as the fiber orientation angle increases, the natural frequencies increase which is related to enhancing the bending stiffness of the composite blades.</description><subject>Angular velocity</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Beam theory (structures)</subject><subject>Blades</subject><subject>Complex Systems</subject><subject>Composite beams</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Euler-Bernoulli beams</subject><subject>Fiber orientation</subject><subject>Hamilton's principle</subject><subject>Humidity</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectricity</subject><subject>Regular Article</subject><subject>Resonant frequencies</subject><subject>Rotation</subject><subject>Temperature effects</subject><subject>Theoretical</subject><subject>Two dimensional materials</subject><subject>Vibration analysis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKuA67F5zXSylOILCm7Ubcjk0aZMkzFJlfHXm1pBV97NvVzOd7j3AHCJ0TXGDM3NsB3mjiDMK0w4RhU_AROCOapqxtjpn_kczFLaolKMY8bZBJhX10WZXfBQetmPySUYLIwhl6VfQxV2Q0guG9j1UpsEP1zewMGZz2B6o3J0CvZyNDFB5-FmXBdyY-JO9tD4dxeD3xmfL8CZlX0ys58-BS93t8_Lh2r1dP-4vFlVimKeK6zJgjRYdq1SZFF3jFBtGG0RbtpybmObWsuWa8WZxsxybCkn2lqqpeStsnQKro6-Qwxve5Oy2IZ9LH8lQThBqGZ00RQVOapUDClFY8UQ3U7GUWAkDomKQ6LiO1HxnajgBaJHKBWxX5v4a_0P9QXTBH2D</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Arabjamaloei, Zahra</creator><creator>Mofidi, Mohammadreza</creator><creator>Hosseini, Mohammad</creator><creator>Bahaadini, Reza</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191101</creationdate><title>Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment</title><author>Arabjamaloei, Zahra ; Mofidi, Mohammadreza ; Hosseini, Mohammad ; Bahaadini, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1d27261ab8cc275b423de43801681496f65da89dc94d14f91f392dff3daa98cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular velocity</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Beam theory (structures)</topic><topic>Blades</topic><topic>Complex Systems</topic><topic>Composite beams</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Euler-Bernoulli beams</topic><topic>Fiber orientation</topic><topic>Hamilton's principle</topic><topic>Humidity</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectricity</topic><topic>Regular Article</topic><topic>Resonant frequencies</topic><topic>Rotation</topic><topic>Temperature effects</topic><topic>Theoretical</topic><topic>Two dimensional materials</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabjamaloei, Zahra</creatorcontrib><creatorcontrib>Mofidi, Mohammadreza</creatorcontrib><creatorcontrib>Hosseini, Mohammad</creatorcontrib><creatorcontrib>Bahaadini, Reza</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabjamaloei, Zahra</au><au>Mofidi, Mohammadreza</au><au>Hosseini, Mohammad</au><au>Bahaadini, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>134</volume><issue>11</issue><spage>556</spage><pages>556-</pages><artnum>556</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In this study, vibration of a rotating composite blade with piezoelectric layers subjected to a tip mass in hygrothermal environment is investigated. The general composite equations for the single layer materials are expanded under varying temperature and humidity concentrations. The governing equations are derived based on the Hamilton principle based on the Euler-Bernoulli beam theory. Applying Galerkin’s procedure, the resulting equations are converted into a set of eigenvalue equations. The effects of temperature, humidity, angular velocity, fiber orientation angle, voltage and piezoelectric layers on the natural frequency of system are explored. The results show that by increasing the angular velocity, the natural frequencies increases. It was also found that increasing temperature and humidity causes a drop in the non-dimensional natural frequency. Besides, it can be concluded that heat and humidity have significant effects on the natural frequency of rotating composite blades. Applying positive and negative voltages results in a raise and drop in the natural frequency, respectively. It was also found that as the angular velocity of the composite beam increases, the non-dimensional natural frequency decreases. Furthermore, the lowest natural frequency is achieved when the tip mass is located at the end of the beam. The results show that as the fiber orientation angle increases, the natural frequencies increase which is related to enhancing the bending stiffness of the composite blades.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2019-12910-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2019-11, Vol.134 (11), p.556, Article 556
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920054376
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Angular velocity
Applied and Technical Physics
Atomic
Beam theory (structures)
Blades
Complex Systems
Composite beams
Condensed Matter Physics
Eigenvalues
Euler-Bernoulli beams
Fiber orientation
Hamilton's principle
Humidity
Mathematical analysis
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Piezoelectricity
Regular Article
Resonant frequencies
Rotation
Temperature effects
Theoretical
Two dimensional materials
Vibration analysis
title Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20analysis%20of%20rotating%20composite%20blades%20with%20piezoelectric%20layers%20in%20hygrothermal%20environment&rft.jtitle=European%20physical%20journal%20plus&rft.au=Arabjamaloei,%20Zahra&rft.date=2019-11-01&rft.volume=134&rft.issue=11&rft.spage=556&rft.pages=556-&rft.artnum=556&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2019-12910-9&rft_dat=%3Cproquest_cross%3E2920054376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920054376&rft_id=info:pmid/&rfr_iscdi=true