Numerical study of MHD natural heat transfer of non-Newtonian, carbon nanotube-water nanofluid inside an internally finned annulus
In this paper, a numerical analysis of natural convection of a non-Newtonian nanofluid flow in a finned annulus employing a finite element approach is presented. The computational domain is affected by an external magnetic field. This study is carried out for various parameters, including Hartmann n...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2021-09, Vol.136 (9), p.960, Article 960 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 960 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Hadidi, Hooman Mousavi, Seyed Mahmood Ghalambaz, Mehdi |
description | In this paper, a numerical analysis of natural convection of a non-Newtonian nanofluid flow in a finned annulus employing a finite element approach is presented. The computational domain is affected by an external magnetic field. This study is carried out for various parameters, including Hartmann number, Rayleigh number, nanoparticles volume fraction, power-law index, Prandtl number, and fin length ratio. Results show that as the Hartmann number increases, the magnetic force opposes the buoyancy force and generally suppresses the convection process. Also, it is shown that the effect of Hartmann number alteration on the equivalent thermal conductivity (K
eq
) weakens for smaller
Ra
numbers. Besides, the influence of the Hartmann number on decreasing the net convective heat transfer drop as the power-law index increases, and augmentation of the power-law index causes K
eq
to decline. The results reveal that by adding nanoparticles to the base fluid, the enhancement in total heat transfer is more intensified in low Rayleigh numbers with a reduction in the difference between K
eq
values for various volume fractions as the Hartmann number rises. Furthermore, the effect of the Hartmann number on decreasing the net convective heat transfer increases for lower power-law index values, i.e., variations of the Hartmann number has a stronger influence on K
eq
for power-law fluids with n 1. |
doi_str_mv | 10.1140/epjp/s13360-021-01923-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920039551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920039551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ff669d3c5a573e8c6f724bd157a58d719b6d96569a1920055288202acc1806253</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEElXpN2CJLaZ-JvESlUeRoGxgbTmJDalSp_ihqFu-HIcgwQ5vPJ65Z2SdLDvH6ApjhpZ6v90vPaY0RxARDBEWhMLhKJsRLBDkjLHjP_VptvB-i9JhAjPBZtnnJu60a2vVAR9icwC9AU_rG2BViC4137UKIDhlvdFuHNrewo0eQm9bZS9BrVzV2xS3fYiVhoMKKTc-TRfbBrTWt40GyqYqTazqugMwrbW6SU0bu-jPshOjOq8XP_c8e727fVmt4ePz_cPq-hHWlLIAjclz0dCaK15QXda5KQirGswLxcumwKLKG5HzXKjkACHOSVkSRFRd4xLlhNN5djHt3bv-I2of5LaP44-8JCNBBec4pYopVbvee6eN3Lt2p9xBYiRH53J0LifnMjmX387lkMhyIn0i7Jt2v_v_Q78AB3uJ7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920039551</pqid></control><display><type>article</type><title>Numerical study of MHD natural heat transfer of non-Newtonian, carbon nanotube-water nanofluid inside an internally finned annulus</title><source>SpringerLink (Online service)</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Databases</source><creator>Hadidi, Hooman ; Mousavi, Seyed Mahmood ; Ghalambaz, Mehdi</creator><creatorcontrib>Hadidi, Hooman ; Mousavi, Seyed Mahmood ; Ghalambaz, Mehdi</creatorcontrib><description>In this paper, a numerical analysis of natural convection of a non-Newtonian nanofluid flow in a finned annulus employing a finite element approach is presented. The computational domain is affected by an external magnetic field. This study is carried out for various parameters, including Hartmann number, Rayleigh number, nanoparticles volume fraction, power-law index, Prandtl number, and fin length ratio. Results show that as the Hartmann number increases, the magnetic force opposes the buoyancy force and generally suppresses the convection process. Also, it is shown that the effect of Hartmann number alteration on the equivalent thermal conductivity (K
eq
) weakens for smaller
Ra
numbers. Besides, the influence of the Hartmann number on decreasing the net convective heat transfer drop as the power-law index increases, and augmentation of the power-law index causes K
eq
to decline. The results reveal that by adding nanoparticles to the base fluid, the enhancement in total heat transfer is more intensified in low Rayleigh numbers with a reduction in the difference between K
eq
values for various volume fractions as the Hartmann number rises. Furthermore, the effect of the Hartmann number on decreasing the net convective heat transfer increases for lower power-law index values, i.e., variations of the Hartmann number has a stronger influence on K
eq
for power-law fluids with n < 1 in comparison with those with n > 1.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01923-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annuli ; Applied and Technical Physics ; Atomic ; Brownian motion ; Carbon nanotubes ; Complex Systems ; Condensed Matter Physics ; Convection ; Convective heat transfer ; Dimensional analysis ; Enthalpy ; Entropy ; Finite volume method ; Fluid flow ; Free convection ; Hartmann number ; Heat conductivity ; Heat transfer ; Investigations ; Magnetic domains ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Nanofluids ; Nanoparticles ; Numerical analysis ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Power law ; Prandtl number ; Radiation ; Rayleigh number ; Regular Article ; Reynolds number ; Theoretical ; Thermal conductivity ; Velocity</subject><ispartof>European physical journal plus, 2021-09, Vol.136 (9), p.960, Article 960</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ff669d3c5a573e8c6f724bd157a58d719b6d96569a1920055288202acc1806253</citedby><cites>FETCH-LOGICAL-c334t-ff669d3c5a573e8c6f724bd157a58d719b6d96569a1920055288202acc1806253</cites><orcidid>0000-0001-8762-5510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01923-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920039551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Hadidi, Hooman</creatorcontrib><creatorcontrib>Mousavi, Seyed Mahmood</creatorcontrib><creatorcontrib>Ghalambaz, Mehdi</creatorcontrib><title>Numerical study of MHD natural heat transfer of non-Newtonian, carbon nanotube-water nanofluid inside an internally finned annulus</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, a numerical analysis of natural convection of a non-Newtonian nanofluid flow in a finned annulus employing a finite element approach is presented. The computational domain is affected by an external magnetic field. This study is carried out for various parameters, including Hartmann number, Rayleigh number, nanoparticles volume fraction, power-law index, Prandtl number, and fin length ratio. Results show that as the Hartmann number increases, the magnetic force opposes the buoyancy force and generally suppresses the convection process. Also, it is shown that the effect of Hartmann number alteration on the equivalent thermal conductivity (K
eq
) weakens for smaller
Ra
numbers. Besides, the influence of the Hartmann number on decreasing the net convective heat transfer drop as the power-law index increases, and augmentation of the power-law index causes K
eq
to decline. The results reveal that by adding nanoparticles to the base fluid, the enhancement in total heat transfer is more intensified in low Rayleigh numbers with a reduction in the difference between K
eq
values for various volume fractions as the Hartmann number rises. Furthermore, the effect of the Hartmann number on decreasing the net convective heat transfer increases for lower power-law index values, i.e., variations of the Hartmann number has a stronger influence on K
eq
for power-law fluids with n < 1 in comparison with those with n > 1.</description><subject>Annuli</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Brownian motion</subject><subject>Carbon nanotubes</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Convection</subject><subject>Convective heat transfer</subject><subject>Dimensional analysis</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Hartmann number</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power law</subject><subject>Prandtl number</subject><subject>Radiation</subject><subject>Rayleigh number</subject><subject>Regular Article</subject><subject>Reynolds number</subject><subject>Theoretical</subject><subject>Thermal conductivity</subject><subject>Velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtOwzAQRSMEElXpN2CJLaZ-JvESlUeRoGxgbTmJDalSp_ihqFu-HIcgwQ5vPJ65Z2SdLDvH6ApjhpZ6v90vPaY0RxARDBEWhMLhKJsRLBDkjLHjP_VptvB-i9JhAjPBZtnnJu60a2vVAR9icwC9AU_rG2BViC4137UKIDhlvdFuHNrewo0eQm9bZS9BrVzV2xS3fYiVhoMKKTc-TRfbBrTWt40GyqYqTazqugMwrbW6SU0bu-jPshOjOq8XP_c8e727fVmt4ePz_cPq-hHWlLIAjclz0dCaK15QXda5KQirGswLxcumwKLKG5HzXKjkACHOSVkSRFRd4xLlhNN5djHt3bv-I2of5LaP44-8JCNBBec4pYopVbvee6eN3Lt2p9xBYiRH53J0LifnMjmX387lkMhyIn0i7Jt2v_v_Q78AB3uJ7A</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hadidi, Hooman</creator><creator>Mousavi, Seyed Mahmood</creator><creator>Ghalambaz, Mehdi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8762-5510</orcidid></search><sort><creationdate>20210901</creationdate><title>Numerical study of MHD natural heat transfer of non-Newtonian, carbon nanotube-water nanofluid inside an internally finned annulus</title><author>Hadidi, Hooman ; Mousavi, Seyed Mahmood ; Ghalambaz, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ff669d3c5a573e8c6f724bd157a58d719b6d96569a1920055288202acc1806253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annuli</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Brownian motion</topic><topic>Carbon nanotubes</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Convection</topic><topic>Convective heat transfer</topic><topic>Dimensional analysis</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Hartmann number</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power law</topic><topic>Prandtl number</topic><topic>Radiation</topic><topic>Rayleigh number</topic><topic>Regular Article</topic><topic>Reynolds number</topic><topic>Theoretical</topic><topic>Thermal conductivity</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadidi, Hooman</creatorcontrib><creatorcontrib>Mousavi, Seyed Mahmood</creatorcontrib><creatorcontrib>Ghalambaz, Mehdi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadidi, Hooman</au><au>Mousavi, Seyed Mahmood</au><au>Ghalambaz, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of MHD natural heat transfer of non-Newtonian, carbon nanotube-water nanofluid inside an internally finned annulus</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>136</volume><issue>9</issue><spage>960</spage><pages>960-</pages><artnum>960</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, a numerical analysis of natural convection of a non-Newtonian nanofluid flow in a finned annulus employing a finite element approach is presented. The computational domain is affected by an external magnetic field. This study is carried out for various parameters, including Hartmann number, Rayleigh number, nanoparticles volume fraction, power-law index, Prandtl number, and fin length ratio. Results show that as the Hartmann number increases, the magnetic force opposes the buoyancy force and generally suppresses the convection process. Also, it is shown that the effect of Hartmann number alteration on the equivalent thermal conductivity (K
eq
) weakens for smaller
Ra
numbers. Besides, the influence of the Hartmann number on decreasing the net convective heat transfer drop as the power-law index increases, and augmentation of the power-law index causes K
eq
to decline. The results reveal that by adding nanoparticles to the base fluid, the enhancement in total heat transfer is more intensified in low Rayleigh numbers with a reduction in the difference between K
eq
values for various volume fractions as the Hartmann number rises. Furthermore, the effect of the Hartmann number on decreasing the net convective heat transfer increases for lower power-law index values, i.e., variations of the Hartmann number has a stronger influence on K
eq
for power-law fluids with n < 1 in comparison with those with n > 1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01923-w</doi><orcidid>https://orcid.org/0000-0001-8762-5510</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-09, Vol.136 (9), p.960, Article 960 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2920039551 |
source | SpringerLink (Online service); ProQuest Central UK/Ireland; ProQuest Databases |
subjects | Annuli Applied and Technical Physics Atomic Brownian motion Carbon nanotubes Complex Systems Condensed Matter Physics Convection Convective heat transfer Dimensional analysis Enthalpy Entropy Finite volume method Fluid flow Free convection Hartmann number Heat conductivity Heat transfer Investigations Magnetic domains Magnetic fields Mathematical and Computational Physics Molecular Nanofluids Nanoparticles Numerical analysis Optical and Plasma Physics Physics Physics and Astronomy Power law Prandtl number Radiation Rayleigh number Regular Article Reynolds number Theoretical Thermal conductivity Velocity |
title | Numerical study of MHD natural heat transfer of non-Newtonian, carbon nanotube-water nanofluid inside an internally finned annulus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20MHD%20natural%20heat%20transfer%20of%20non-Newtonian,%20carbon%20nanotube-water%20nanofluid%20inside%20an%20internally%20finned%20annulus&rft.jtitle=European%20physical%20journal%20plus&rft.au=Hadidi,%20Hooman&rft.date=2021-09-01&rft.volume=136&rft.issue=9&rft.spage=960&rft.pages=960-&rft.artnum=960&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01923-w&rft_dat=%3Cproquest_cross%3E2920039551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920039551&rft_id=info:pmid/&rfr_iscdi=true |