Establishment and verification of wind-blown snow sublimation model based on SPH method multi-field coupling

The study on the formation process of wind-blown snow can provide the scientific theoretical basis for the treatment of snowstorm disasters. The fundamental principle of the SPH approach is the independent particle decomposition of the computing domain. The discrete characteristics of snow particles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-10, Vol.138 (10), p.881, Article 881
Hauptverfasser: Zhang, Shuzhi, Jin, Afang, Dai, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 881
container_title European physical journal plus
container_volume 138
creator Zhang, Shuzhi
Jin, Afang
Dai, Yong
description The study on the formation process of wind-blown snow can provide the scientific theoretical basis for the treatment of snowstorm disasters. The fundamental principle of the SPH approach is the independent particle decomposition of the computing domain. The discrete characteristics of snow particles in nature are remarkably similar to the physical properties of these computational particles, which can move through the control equation. This study develops a multi-field coupling SPH wind-blown snow sublimation model using the discrete features of snow particles and the SPH method’s characteristics. The model can depict when the physical characteristics of snowflakes vary over time and in different environments, and it can simulate how snowflakes collide as they travel through the air. Finally, the simulation results are compared with the experimental results and the numerical simulation results of others. The results show that the method is consistent with the previous research results, which verifies the accuracy and feasibility of the SPH numerical simulation method, and obtains some new conclusions.
doi_str_mv 10.1140/epjp/s13360-023-04488-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920015313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920015313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-41570fbdcc9ab1d2fbb99ebc0a8eac632ee8955def50c323e91d95d9969b02cf3</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOOY-gwGfo0mabs2jjOmEgYL6HJrksnW0SW1ax769mRX0zXu5O-7-_-N-CF0zesuYoHfQ7tu7yLJsTgnlGaFCFAU5nqEJZ5KSXAhx_qe-RLMY9zSFkExIMUH1Kvalrqu4a8D3uPQWf0JXucqUfRU8Dg4fKm-JrsPB4-jDAcch7TfjuAkWaqzLCBan9vVljRvod8HiZqj7irgKaotNGNq68tsrdOHKOsLsJ0_R-8Pqbbkmm-fHp-X9hhhe0J4Ili-o09YYWWpmudNaStCGlgWUZp5xgELmuQWXU5PxDCSzMrdSzqWm3Lhsim5G37YLHwPEXu3D0Pl0UnHJKWV5lpBN0WLcMl2IsQOn2i791R0Vo-pEV53oqpGuSnTVN111TMpiVMak8Fvofv3_k34BgYGEFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920015313</pqid></control><display><type>article</type><title>Establishment and verification of wind-blown snow sublimation model based on SPH method multi-field coupling</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhang, Shuzhi ; Jin, Afang ; Dai, Yong</creator><creatorcontrib>Zhang, Shuzhi ; Jin, Afang ; Dai, Yong</creatorcontrib><description>The study on the formation process of wind-blown snow can provide the scientific theoretical basis for the treatment of snowstorm disasters. The fundamental principle of the SPH approach is the independent particle decomposition of the computing domain. The discrete characteristics of snow particles in nature are remarkably similar to the physical properties of these computational particles, which can move through the control equation. This study develops a multi-field coupling SPH wind-blown snow sublimation model using the discrete features of snow particles and the SPH method’s characteristics. The model can depict when the physical characteristics of snowflakes vary over time and in different environments, and it can simulate how snowflakes collide as they travel through the air. Finally, the simulation results are compared with the experimental results and the numerical simulation results of others. The results show that the method is consistent with the previous research results, which verifies the accuracy and feasibility of the SPH numerical simulation method, and obtains some new conclusions.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-04488-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Complex Systems ; Condensed Matter Physics ; Coupling ; Gases ; Humidity ; Hydrology ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Physical properties ; Physics ; Physics and Astronomy ; Regular Article ; Simulation ; Snow ; Snowflakes ; Snowstorms ; Sublimation ; Theoretical ; Velocity ; Wind</subject><ispartof>European physical journal plus, 2023-10, Vol.138 (10), p.881, Article 881</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-41570fbdcc9ab1d2fbb99ebc0a8eac632ee8955def50c323e91d95d9969b02cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04488-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920015313?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Shuzhi</creatorcontrib><creatorcontrib>Jin, Afang</creatorcontrib><creatorcontrib>Dai, Yong</creatorcontrib><title>Establishment and verification of wind-blown snow sublimation model based on SPH method multi-field coupling</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The study on the formation process of wind-blown snow can provide the scientific theoretical basis for the treatment of snowstorm disasters. The fundamental principle of the SPH approach is the independent particle decomposition of the computing domain. The discrete characteristics of snow particles in nature are remarkably similar to the physical properties of these computational particles, which can move through the control equation. This study develops a multi-field coupling SPH wind-blown snow sublimation model using the discrete features of snow particles and the SPH method’s characteristics. The model can depict when the physical characteristics of snowflakes vary over time and in different environments, and it can simulate how snowflakes collide as they travel through the air. Finally, the simulation results are compared with the experimental results and the numerical simulation results of others. The results show that the method is consistent with the previous research results, which verifies the accuracy and feasibility of the SPH numerical simulation method, and obtains some new conclusions.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Coupling</subject><subject>Gases</subject><subject>Humidity</subject><subject>Hydrology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Simulation</subject><subject>Snow</subject><subject>Snowflakes</subject><subject>Snowstorms</subject><subject>Sublimation</subject><subject>Theoretical</subject><subject>Velocity</subject><subject>Wind</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkFFLwzAQx4MoOOY-gwGfo0mabs2jjOmEgYL6HJrksnW0SW1ax769mRX0zXu5O-7-_-N-CF0zesuYoHfQ7tu7yLJsTgnlGaFCFAU5nqEJZ5KSXAhx_qe-RLMY9zSFkExIMUH1Kvalrqu4a8D3uPQWf0JXucqUfRU8Dg4fKm-JrsPB4-jDAcch7TfjuAkWaqzLCBan9vVljRvod8HiZqj7irgKaotNGNq68tsrdOHKOsLsJ0_R-8Pqbbkmm-fHp-X9hhhe0J4Ili-o09YYWWpmudNaStCGlgWUZp5xgELmuQWXU5PxDCSzMrdSzqWm3Lhsim5G37YLHwPEXu3D0Pl0UnHJKWV5lpBN0WLcMl2IsQOn2i791R0Vo-pEV53oqpGuSnTVN111TMpiVMak8Fvofv3_k34BgYGEFQ</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Zhang, Shuzhi</creator><creator>Jin, Afang</creator><creator>Dai, Yong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231005</creationdate><title>Establishment and verification of wind-blown snow sublimation model based on SPH method multi-field coupling</title><author>Zhang, Shuzhi ; Jin, Afang ; Dai, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-41570fbdcc9ab1d2fbb99ebc0a8eac632ee8955def50c323e91d95d9969b02cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Coupling</topic><topic>Gases</topic><topic>Humidity</topic><topic>Hydrology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Simulation</topic><topic>Snow</topic><topic>Snowflakes</topic><topic>Snowstorms</topic><topic>Sublimation</topic><topic>Theoretical</topic><topic>Velocity</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuzhi</creatorcontrib><creatorcontrib>Jin, Afang</creatorcontrib><creatorcontrib>Dai, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuzhi</au><au>Jin, Afang</au><au>Dai, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment and verification of wind-blown snow sublimation model based on SPH method multi-field coupling</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-10-05</date><risdate>2023</risdate><volume>138</volume><issue>10</issue><spage>881</spage><pages>881-</pages><artnum>881</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The study on the formation process of wind-blown snow can provide the scientific theoretical basis for the treatment of snowstorm disasters. The fundamental principle of the SPH approach is the independent particle decomposition of the computing domain. The discrete characteristics of snow particles in nature are remarkably similar to the physical properties of these computational particles, which can move through the control equation. This study develops a multi-field coupling SPH wind-blown snow sublimation model using the discrete features of snow particles and the SPH method’s characteristics. The model can depict when the physical characteristics of snowflakes vary over time and in different environments, and it can simulate how snowflakes collide as they travel through the air. Finally, the simulation results are compared with the experimental results and the numerical simulation results of others. The results show that the method is consistent with the previous research results, which verifies the accuracy and feasibility of the SPH numerical simulation method, and obtains some new conclusions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-04488-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-10, Vol.138 (10), p.881, Article 881
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920015313
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied and Technical Physics
Approximation
Atomic
Complex Systems
Condensed Matter Physics
Coupling
Gases
Humidity
Hydrology
Mathematical and Computational Physics
Mathematical models
Molecular
Optical and Plasma Physics
Physical properties
Physics
Physics and Astronomy
Regular Article
Simulation
Snow
Snowflakes
Snowstorms
Sublimation
Theoretical
Velocity
Wind
title Establishment and verification of wind-blown snow sublimation model based on SPH method multi-field coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20and%20verification%20of%20wind-blown%20snow%20sublimation%20model%20based%20on%20SPH%20method%20multi-field%20coupling&rft.jtitle=European%20physical%20journal%20plus&rft.au=Zhang,%20Shuzhi&rft.date=2023-10-05&rft.volume=138&rft.issue=10&rft.spage=881&rft.pages=881-&rft.artnum=881&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-04488-y&rft_dat=%3Cproquest_cross%3E2920015313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920015313&rft_id=info:pmid/&rfr_iscdi=true