A globalized robust preemptive goal programming method for marine reserve problem with eco-economy tradeoffs and multiple uncertainties

“Blue growth” emphasizes the sustainable use of marine resources for economic process whereas conserving the health of marine ecosystems. Motivated by this, we focus on the marine reserve design problem under multiple uncertainties, incorporating conservation, economy, reserve area and reserve shape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2023-10, Vol.14 (10), p.13375-13385
Hauptverfasser: Jia, Ruru, Gao, Jinwu, Zou, Zezhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13385
container_issue 10
container_start_page 13375
container_title Journal of ambient intelligence and humanized computing
container_volume 14
creator Jia, Ruru
Gao, Jinwu
Zou, Zezhou
description “Blue growth” emphasizes the sustainable use of marine resources for economic process whereas conserving the health of marine ecosystems. Motivated by this, we focus on the marine reserve design problem under multiple uncertainties, incorporating conservation, economy, reserve area and reserve shape compactness. We develop a novel globalized robust preemptive goal programming model to investigate the problem, where inner-outer uncertainty sets are defined to model the uncertain conservation value and opportunity cost. We thereby derive the tractable globalized robust counterpart of the proposed model and perform the model analysis on the globalized sensitivity parameters. Our proposed optimization framework can be demonstrated for the marine reserve design of West Coast National Marine Park of Qingdao in China. The computational experiments justify several important insights: (i) the resulting reserve area design is more robust than the delimitation of 2014 on the West Coast New Area; (ii) with the change of parameters related to uncertainty sets and global sensitivity, the conservation value can always be realized while the opportunity cost is sensitive; (iii) the comparison results with classic robust optimization method show that the proposed method can reduce the conservatism of decisions and enable planners to formulate more effective policy.
doi_str_mv 10.1007/s12652-022-03792-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920010711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920010711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d6daf3ccf4f4abd9d247de537253d999136dd5119975629b1e7f44d8419eec113</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxosouKy-gKeA52omaZvNUcR_IHjRc0ibSY20zZqkyvoCvrZxV_TmwDAJ_L5vkq8oToCeAaXiPAJralZSlpsLyUq2Vyxg1azKGqp6__fMxWFxHOMLzcUlB4BF8XlB-sG3enAfaEjw7RwTWQfEcZ3cG5Le6yHffR_0OLqpJyOmZ2-I9YGMOrgJScCIIaOZagccybtLzwQ7X-ae_LghKWiD3tpI9GTIOA_JrQck89RhSNpNyWE8Kg6sHiIe_8xl8XR99Xh5W94_3NxdXtyXHRM0laYx2vKus5WtdGukYZUwWHPBam6klMAbY2oAKUXdMNkCCltVZlWBROwA-LI43fnm177OGJN68XOY8krFJKMUqNhSbEd1wccY0Kp1cPm7GwVUfWeudpmrnLnaZq5YFvGdKGZ46jH8Wf-j-gIxjIdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920010711</pqid></control><display><type>article</type><title>A globalized robust preemptive goal programming method for marine reserve problem with eco-economy tradeoffs and multiple uncertainties</title><source>AUTh Library subscriptions: ProQuest Central</source><source>SpringerLink</source><source>ProQuest Central</source><creator>Jia, Ruru ; Gao, Jinwu ; Zou, Zezhou</creator><creatorcontrib>Jia, Ruru ; Gao, Jinwu ; Zou, Zezhou</creatorcontrib><description>“Blue growth” emphasizes the sustainable use of marine resources for economic process whereas conserving the health of marine ecosystems. Motivated by this, we focus on the marine reserve design problem under multiple uncertainties, incorporating conservation, economy, reserve area and reserve shape compactness. We develop a novel globalized robust preemptive goal programming model to investigate the problem, where inner-outer uncertainty sets are defined to model the uncertain conservation value and opportunity cost. We thereby derive the tractable globalized robust counterpart of the proposed model and perform the model analysis on the globalized sensitivity parameters. Our proposed optimization framework can be demonstrated for the marine reserve design of West Coast National Marine Park of Qingdao in China. The computational experiments justify several important insights: (i) the resulting reserve area design is more robust than the delimitation of 2014 on the West Coast New Area; (ii) with the change of parameters related to uncertainty sets and global sensitivity, the conservation value can always be realized while the opportunity cost is sensitive; (iii) the comparison results with classic robust optimization method show that the proposed method can reduce the conservatism of decisions and enable planners to formulate more effective policy.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-022-03792-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Biodiversity ; Case studies ; Commercial fishing ; Computational Intelligence ; Conservation ; Decision making ; Engineering ; Fisheries ; Fishing ; Goal programming ; Marine resources ; Mathematical models ; Opportunity costs ; Optimization ; Original Research ; Parameter sensitivity ; Parameter uncertainty ; Planning ; Preempting ; Robotics and Automation ; Robustness ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2023-10, Vol.14 (10), p.13375-13385</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d6daf3ccf4f4abd9d247de537253d999136dd5119975629b1e7f44d8419eec113</cites><orcidid>0000-0003-4806-927X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-022-03792-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920010711?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Jia, Ruru</creatorcontrib><creatorcontrib>Gao, Jinwu</creatorcontrib><creatorcontrib>Zou, Zezhou</creatorcontrib><title>A globalized robust preemptive goal programming method for marine reserve problem with eco-economy tradeoffs and multiple uncertainties</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>“Blue growth” emphasizes the sustainable use of marine resources for economic process whereas conserving the health of marine ecosystems. Motivated by this, we focus on the marine reserve design problem under multiple uncertainties, incorporating conservation, economy, reserve area and reserve shape compactness. We develop a novel globalized robust preemptive goal programming model to investigate the problem, where inner-outer uncertainty sets are defined to model the uncertain conservation value and opportunity cost. We thereby derive the tractable globalized robust counterpart of the proposed model and perform the model analysis on the globalized sensitivity parameters. Our proposed optimization framework can be demonstrated for the marine reserve design of West Coast National Marine Park of Qingdao in China. The computational experiments justify several important insights: (i) the resulting reserve area design is more robust than the delimitation of 2014 on the West Coast New Area; (ii) with the change of parameters related to uncertainty sets and global sensitivity, the conservation value can always be realized while the opportunity cost is sensitive; (iii) the comparison results with classic robust optimization method show that the proposed method can reduce the conservatism of decisions and enable planners to formulate more effective policy.</description><subject>Artificial Intelligence</subject><subject>Biodiversity</subject><subject>Case studies</subject><subject>Commercial fishing</subject><subject>Computational Intelligence</subject><subject>Conservation</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Fisheries</subject><subject>Fishing</subject><subject>Goal programming</subject><subject>Marine resources</subject><subject>Mathematical models</subject><subject>Opportunity costs</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>Planning</subject><subject>Preempting</subject><subject>Robotics and Automation</subject><subject>Robustness</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9KxDAQxosouKy-gKeA52omaZvNUcR_IHjRc0ibSY20zZqkyvoCvrZxV_TmwDAJ_L5vkq8oToCeAaXiPAJralZSlpsLyUq2Vyxg1azKGqp6__fMxWFxHOMLzcUlB4BF8XlB-sG3enAfaEjw7RwTWQfEcZ3cG5Le6yHffR_0OLqpJyOmZ2-I9YGMOrgJScCIIaOZagccybtLzwQ7X-ae_LghKWiD3tpI9GTIOA_JrQck89RhSNpNyWE8Kg6sHiIe_8xl8XR99Xh5W94_3NxdXtyXHRM0laYx2vKus5WtdGukYZUwWHPBam6klMAbY2oAKUXdMNkCCltVZlWBROwA-LI43fnm177OGJN68XOY8krFJKMUqNhSbEd1wccY0Kp1cPm7GwVUfWeudpmrnLnaZq5YFvGdKGZ46jH8Wf-j-gIxjIdw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Jia, Ruru</creator><creator>Gao, Jinwu</creator><creator>Zou, Zezhou</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4806-927X</orcidid></search><sort><creationdate>20231001</creationdate><title>A globalized robust preemptive goal programming method for marine reserve problem with eco-economy tradeoffs and multiple uncertainties</title><author>Jia, Ruru ; Gao, Jinwu ; Zou, Zezhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d6daf3ccf4f4abd9d247de537253d999136dd5119975629b1e7f44d8419eec113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Biodiversity</topic><topic>Case studies</topic><topic>Commercial fishing</topic><topic>Computational Intelligence</topic><topic>Conservation</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Fisheries</topic><topic>Fishing</topic><topic>Goal programming</topic><topic>Marine resources</topic><topic>Mathematical models</topic><topic>Opportunity costs</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>Planning</topic><topic>Preempting</topic><topic>Robotics and Automation</topic><topic>Robustness</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Ruru</creatorcontrib><creatorcontrib>Gao, Jinwu</creatorcontrib><creatorcontrib>Zou, Zezhou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Ruru</au><au>Gao, Jinwu</au><au>Zou, Zezhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A globalized robust preemptive goal programming method for marine reserve problem with eco-economy tradeoffs and multiple uncertainties</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>14</volume><issue>10</issue><spage>13375</spage><epage>13385</epage><pages>13375-13385</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>“Blue growth” emphasizes the sustainable use of marine resources for economic process whereas conserving the health of marine ecosystems. Motivated by this, we focus on the marine reserve design problem under multiple uncertainties, incorporating conservation, economy, reserve area and reserve shape compactness. We develop a novel globalized robust preemptive goal programming model to investigate the problem, where inner-outer uncertainty sets are defined to model the uncertain conservation value and opportunity cost. We thereby derive the tractable globalized robust counterpart of the proposed model and perform the model analysis on the globalized sensitivity parameters. Our proposed optimization framework can be demonstrated for the marine reserve design of West Coast National Marine Park of Qingdao in China. The computational experiments justify several important insights: (i) the resulting reserve area design is more robust than the delimitation of 2014 on the West Coast New Area; (ii) with the change of parameters related to uncertainty sets and global sensitivity, the conservation value can always be realized while the opportunity cost is sensitive; (iii) the comparison results with classic robust optimization method show that the proposed method can reduce the conservatism of decisions and enable planners to formulate more effective policy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-022-03792-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4806-927X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2023-10, Vol.14 (10), p.13375-13385
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2920010711
source AUTh Library subscriptions: ProQuest Central; SpringerLink; ProQuest Central
subjects Artificial Intelligence
Biodiversity
Case studies
Commercial fishing
Computational Intelligence
Conservation
Decision making
Engineering
Fisheries
Fishing
Goal programming
Marine resources
Mathematical models
Opportunity costs
Optimization
Original Research
Parameter sensitivity
Parameter uncertainty
Planning
Preempting
Robotics and Automation
Robustness
User Interfaces and Human Computer Interaction
title A globalized robust preemptive goal programming method for marine reserve problem with eco-economy tradeoffs and multiple uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20globalized%20robust%20preemptive%20goal%20programming%20method%20for%20marine%20reserve%20problem%20with%20eco-economy%20tradeoffs%20and%20multiple%20uncertainties&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Jia,%20Ruru&rft.date=2023-10-01&rft.volume=14&rft.issue=10&rft.spage=13375&rft.epage=13385&rft.pages=13375-13385&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-022-03792-2&rft_dat=%3Cproquest_cross%3E2920010711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920010711&rft_id=info:pmid/&rfr_iscdi=true