Molecular model of dynamic social network based on e-mail communication
In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate t...
Gespeichert in:
Veröffentlicht in: | Social network analysis and mining 2013-09, Vol.3 (3), p.543-563 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 563 |
---|---|
container_issue | 3 |
container_start_page | 543 |
container_title | Social network analysis and mining |
container_volume | 3 |
creator | Budka, Marcin Juszczyszyn, Krzysztof Musial, Katarzyna Musial, Anna |
description | In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the
n
-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain. |
doi_str_mv | 10.1007/s13278-013-0101-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920007358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920007358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-91a79481660cbdb134a0fc37d329273612d6d8d00065cac3315f1f2d6455f3d93</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouOh-AG8Bz9Gk06TNURZdhRUveg7Z_JGubbImLbLf3iwVPXkYZhjeezP8ELpi9IZR2txmBlXTEsqgFGWkPkEL1gpJeC3k6e_M6Tla5ryjtKgAJBULtH6OvTNTrxMeonU9jh7bQ9BDZ3COptM9Dm78iukDb3V2FseAHRl012MTh2EKndFjF8MlOvO6z2750y_Q28P96-qRbF7WT6u7DTHA5Ugk042sWyYENVu7ZVBr6g00FipZNSBYZYVtbflQcKMNAOOe-bKsOfdgJVyg6zl3n-Ln5PKodnFKoZxUJaH4GuBtUbFZZVLMOTmv9qkbdDooRtURmZqRqYJMHZGpuniq2ZOLNry79Jf8v-kbfZ9soQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920007358</pqid></control><display><type>article</type><title>Molecular model of dynamic social network based on e-mail communication</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Budka, Marcin ; Juszczyszyn, Krzysztof ; Musial, Katarzyna ; Musial, Anna</creator><creatorcontrib>Budka, Marcin ; Juszczyszyn, Krzysztof ; Musial, Katarzyna ; Musial, Anna</creatorcontrib><description>In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the
n
-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-013-0101-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Communication ; Computer Science ; Data Mining and Knowledge Discovery ; Economics ; Electronic mail ; Email ; Embedding ; Euclidean geometry ; Evolution ; Game Theory ; Humanities ; Law ; Lennard-Jones potential ; Methodology of the Social Sciences ; Modelling ; Original Article ; Preservation ; Simulation ; Social and Behav. Sciences ; Social networks ; Social space ; Statistics for Social Sciences ; System dynamics ; Transformation</subject><ispartof>Social network analysis and mining, 2013-09, Vol.3 (3), p.543-563</ispartof><rights>The Author(s) 2013</rights><rights>The Author(s) 2013. This work is published under http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-91a79481660cbdb134a0fc37d329273612d6d8d00065cac3315f1f2d6455f3d93</citedby><cites>FETCH-LOGICAL-c359t-91a79481660cbdb134a0fc37d329273612d6d8d00065cac3315f1f2d6455f3d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13278-013-0101-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920007358?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Budka, Marcin</creatorcontrib><creatorcontrib>Juszczyszyn, Krzysztof</creatorcontrib><creatorcontrib>Musial, Katarzyna</creatorcontrib><creatorcontrib>Musial, Anna</creatorcontrib><title>Molecular model of dynamic social network based on e-mail communication</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the
n
-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Communication</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Economics</subject><subject>Electronic mail</subject><subject>Email</subject><subject>Embedding</subject><subject>Euclidean geometry</subject><subject>Evolution</subject><subject>Game Theory</subject><subject>Humanities</subject><subject>Law</subject><subject>Lennard-Jones potential</subject><subject>Methodology of the Social Sciences</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Preservation</subject><subject>Simulation</subject><subject>Social and Behav. Sciences</subject><subject>Social networks</subject><subject>Social space</subject><subject>Statistics for Social Sciences</subject><subject>System dynamics</subject><subject>Transformation</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouOh-AG8Bz9Gk06TNURZdhRUveg7Z_JGubbImLbLf3iwVPXkYZhjeezP8ELpi9IZR2txmBlXTEsqgFGWkPkEL1gpJeC3k6e_M6Tla5ryjtKgAJBULtH6OvTNTrxMeonU9jh7bQ9BDZ3COptM9Dm78iukDb3V2FseAHRl012MTh2EKndFjF8MlOvO6z2750y_Q28P96-qRbF7WT6u7DTHA5Ugk042sWyYENVu7ZVBr6g00FipZNSBYZYVtbflQcKMNAOOe-bKsOfdgJVyg6zl3n-Ln5PKodnFKoZxUJaH4GuBtUbFZZVLMOTmv9qkbdDooRtURmZqRqYJMHZGpuniq2ZOLNry79Jf8v-kbfZ9soQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Budka, Marcin</creator><creator>Juszczyszyn, Krzysztof</creator><creator>Musial, Katarzyna</creator><creator>Musial, Anna</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130901</creationdate><title>Molecular model of dynamic social network based on e-mail communication</title><author>Budka, Marcin ; Juszczyszyn, Krzysztof ; Musial, Katarzyna ; Musial, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-91a79481660cbdb134a0fc37d329273612d6d8d00065cac3315f1f2d6455f3d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Communication</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Economics</topic><topic>Electronic mail</topic><topic>Email</topic><topic>Embedding</topic><topic>Euclidean geometry</topic><topic>Evolution</topic><topic>Game Theory</topic><topic>Humanities</topic><topic>Law</topic><topic>Lennard-Jones potential</topic><topic>Methodology of the Social Sciences</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Preservation</topic><topic>Simulation</topic><topic>Social and Behav. Sciences</topic><topic>Social networks</topic><topic>Social space</topic><topic>Statistics for Social Sciences</topic><topic>System dynamics</topic><topic>Transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budka, Marcin</creatorcontrib><creatorcontrib>Juszczyszyn, Krzysztof</creatorcontrib><creatorcontrib>Musial, Katarzyna</creatorcontrib><creatorcontrib>Musial, Anna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budka, Marcin</au><au>Juszczyszyn, Krzysztof</au><au>Musial, Katarzyna</au><au>Musial, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular model of dynamic social network based on e-mail communication</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>3</volume><issue>3</issue><spage>543</spage><epage>563</epage><pages>543-563</pages><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the
n
-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-013-0101-4</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5450 |
ispartof | Social network analysis and mining, 2013-09, Vol.3 (3), p.543-563 |
issn | 1869-5450 1869-5469 |
language | eng |
recordid | cdi_proquest_journals_2920007358 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Applications of Graph Theory and Complex Networks Communication Computer Science Data Mining and Knowledge Discovery Economics Electronic mail Embedding Euclidean geometry Evolution Game Theory Humanities Law Lennard-Jones potential Methodology of the Social Sciences Modelling Original Article Preservation Simulation Social and Behav. Sciences Social networks Social space Statistics for Social Sciences System dynamics Transformation |
title | Molecular model of dynamic social network based on e-mail communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20model%20of%20dynamic%20social%20network%20based%20on%20e-mail%20communication&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Budka,%20Marcin&rft.date=2013-09-01&rft.volume=3&rft.issue=3&rft.spage=543&rft.epage=563&rft.pages=543-563&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-013-0101-4&rft_dat=%3Cproquest_cross%3E2920007358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920007358&rft_id=info:pmid/&rfr_iscdi=true |