Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications
Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are prefe...
Gespeichert in:
Veröffentlicht in: | SILICON 2023-12, Vol.15 (18), p.7823-7836 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7836 |
---|---|
container_issue | 18 |
container_start_page | 7823 |
container_title | SILICON |
container_volume | 15 |
creator | Babu, K. Vasu Sree, Gorre Naga Jyothi Islam, Tanvir Das, Sudipta Ghzaoui, Mohammed El Saravanan, R. Agilesh |
description | Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO
2
substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm
×
25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈
-
3 dB), TARC (≈
-
42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band. |
doi_str_mv | 10.1007/s12633-023-02622-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920006555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920006555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f9850b8c921b05736eb97bfe201969a4255d4db30baa26b743ce3954d17405d03</originalsourceid><addsrcrecordid>eNp9kc9Kw0AQxoMoKOoLeBrwoofU_ZNNssda_ActFazobdnNTjTSJnV3K9ST7-DB9_NJ3FrRmwPDzOGb3wfzJckBJT1KSHHiKcs5Twlbdc5YSjaSHVoWeSolLTd_d3K_nex7_0RicVaUudxJPq7R1Z2b6bZC6Ld6uvSNh64GDdePXejapoKBW_qgpx7OZgatRQt3jUWjWwtHtJfRz7d33iMwuXw9hnOnq6iF0dVoHHkB21bD-AUd3DRjBjcL44PTASGawgSdfkQXXuF0BevP59Om0qHpWr-XbNXREvd_5m5ye342GVymw_HF1aA_TCtWkJDWshTElJVk1BBR8ByNLEyNjFCZS50xIWxmDSdGa5abIuMVcikyS4uMCEv4bnK45s5d97xAH9RTt3DxD14xyeKjciFEVLG1qnKd9w5rNXfNTLulokStMlDrDFTMQH1noFZovj7yUdw-oPtD_3P1BdB7iLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920006555</pqid></control><display><type>article</type><title>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</title><source>AUTh Library subscriptions: ProQuest Central</source><source>Springer Journals</source><creator>Babu, K. Vasu ; Sree, Gorre Naga Jyothi ; Islam, Tanvir ; Das, Sudipta ; Ghzaoui, Mohammed El ; Saravanan, R. Agilesh</creator><creatorcontrib>Babu, K. Vasu ; Sree, Gorre Naga Jyothi ; Islam, Tanvir ; Das, Sudipta ; Ghzaoui, Mohammed El ; Saravanan, R. Agilesh</creatorcontrib><description>Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO
2
substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm
×
25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈
-
3 dB), TARC (≈
-
42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-023-02622-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Antennas ; Atmospheric attenuation ; Bandwidths ; Chemistry ; Chemistry and Materials Science ; Communication ; Communications systems ; Electrical resistivity ; Environmental Chemistry ; Explosives detection ; Fractals ; Frequency spectrum ; Graphene ; Inorganic Chemistry ; Lasers ; Materials Science ; Medical imaging ; MIMO communication ; Near field communication ; Optical Devices ; Optics ; Patch antennas ; Photonic band gaps ; Photonic crystals ; Photonics ; Polymer Sciences ; Radiators ; Resonant frequencies ; Silicon dioxide ; Spectrum allocation ; Substrates ; Terahertz frequencies ; Wireless communications</subject><ispartof>SILICON, 2023-12, Vol.15 (18), p.7823-7836</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f9850b8c921b05736eb97bfe201969a4255d4db30baa26b743ce3954d17405d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-023-02622-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920006555?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Babu, K. Vasu</creatorcontrib><creatorcontrib>Sree, Gorre Naga Jyothi</creatorcontrib><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Das, Sudipta</creatorcontrib><creatorcontrib>Ghzaoui, Mohammed El</creatorcontrib><creatorcontrib>Saravanan, R. Agilesh</creatorcontrib><title>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</title><title>SILICON</title><addtitle>Silicon</addtitle><description>Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO
2
substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm
×
25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈
-
3 dB), TARC (≈
-
42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band.</description><subject>Antennas</subject><subject>Atmospheric attenuation</subject><subject>Bandwidths</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Electrical resistivity</subject><subject>Environmental Chemistry</subject><subject>Explosives detection</subject><subject>Fractals</subject><subject>Frequency spectrum</subject><subject>Graphene</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Medical imaging</subject><subject>MIMO communication</subject><subject>Near field communication</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Patch antennas</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Radiators</subject><subject>Resonant frequencies</subject><subject>Silicon dioxide</subject><subject>Spectrum allocation</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Wireless communications</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9Kw0AQxoMoKOoLeBrwoofU_ZNNssda_ActFazobdnNTjTSJnV3K9ST7-DB9_NJ3FrRmwPDzOGb3wfzJckBJT1KSHHiKcs5Twlbdc5YSjaSHVoWeSolLTd_d3K_nex7_0RicVaUudxJPq7R1Z2b6bZC6Ld6uvSNh64GDdePXejapoKBW_qgpx7OZgatRQt3jUWjWwtHtJfRz7d33iMwuXw9hnOnq6iF0dVoHHkB21bD-AUd3DRjBjcL44PTASGawgSdfkQXXuF0BevP59Om0qHpWr-XbNXREvd_5m5ye342GVymw_HF1aA_TCtWkJDWshTElJVk1BBR8ByNLEyNjFCZS50xIWxmDSdGa5abIuMVcikyS4uMCEv4bnK45s5d97xAH9RTt3DxD14xyeKjciFEVLG1qnKd9w5rNXfNTLulokStMlDrDFTMQH1noFZovj7yUdw-oPtD_3P1BdB7iLY</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Babu, K. Vasu</creator><creator>Sree, Gorre Naga Jyothi</creator><creator>Islam, Tanvir</creator><creator>Das, Sudipta</creator><creator>Ghzaoui, Mohammed El</creator><creator>Saravanan, R. Agilesh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231201</creationdate><title>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</title><author>Babu, K. Vasu ; Sree, Gorre Naga Jyothi ; Islam, Tanvir ; Das, Sudipta ; Ghzaoui, Mohammed El ; Saravanan, R. Agilesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f9850b8c921b05736eb97bfe201969a4255d4db30baa26b743ce3954d17405d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Atmospheric attenuation</topic><topic>Bandwidths</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Electrical resistivity</topic><topic>Environmental Chemistry</topic><topic>Explosives detection</topic><topic>Fractals</topic><topic>Frequency spectrum</topic><topic>Graphene</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Medical imaging</topic><topic>MIMO communication</topic><topic>Near field communication</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Patch antennas</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Radiators</topic><topic>Resonant frequencies</topic><topic>Silicon dioxide</topic><topic>Spectrum allocation</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, K. Vasu</creatorcontrib><creatorcontrib>Sree, Gorre Naga Jyothi</creatorcontrib><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Das, Sudipta</creatorcontrib><creatorcontrib>Ghzaoui, Mohammed El</creatorcontrib><creatorcontrib>Saravanan, R. Agilesh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, K. Vasu</au><au>Sree, Gorre Naga Jyothi</au><au>Islam, Tanvir</au><au>Das, Sudipta</au><au>Ghzaoui, Mohammed El</au><au>Saravanan, R. Agilesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><spage>7823</spage><epage>7836</epage><pages>7823-7836</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO
2
substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm
×
25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈
-
3 dB), TARC (≈
-
42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-023-02622-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2023-12, Vol.15 (18), p.7823-7836 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_2920006555 |
source | AUTh Library subscriptions: ProQuest Central; Springer Journals |
subjects | Antennas Atmospheric attenuation Bandwidths Chemistry Chemistry and Materials Science Communication Communications systems Electrical resistivity Environmental Chemistry Explosives detection Fractals Frequency spectrum Graphene Inorganic Chemistry Lasers Materials Science Medical imaging MIMO communication Near field communication Optical Devices Optics Patch antennas Photonic band gaps Photonic crystals Photonics Polymer Sciences Radiators Resonant frequencies Silicon dioxide Spectrum allocation Substrates Terahertz frequencies Wireless communications |
title | Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20a%20Photonic%20Crystals%20Embedded%20Wideband%20(1.41%E2%80%933.0%20THz)%20Fractal%20MIMO%20Antenna%20Over%20SiO2%20Substrate%20for%20Terahertz%20Band%20Applications&rft.jtitle=SILICON&rft.au=Babu,%20K.%20Vasu&rft.date=2023-12-01&rft.volume=15&rft.issue=18&rft.spage=7823&rft.epage=7836&rft.pages=7823-7836&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-023-02622-0&rft_dat=%3Cproquest_cross%3E2920006555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920006555&rft_id=info:pmid/&rfr_iscdi=true |