Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications

Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are prefe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2023-12, Vol.15 (18), p.7823-7836
Hauptverfasser: Babu, K. Vasu, Sree, Gorre Naga Jyothi, Islam, Tanvir, Das, Sudipta, Ghzaoui, Mohammed El, Saravanan, R. Agilesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7836
container_issue 18
container_start_page 7823
container_title SILICON
container_volume 15
creator Babu, K. Vasu
Sree, Gorre Naga Jyothi
Islam, Tanvir
Das, Sudipta
Ghzaoui, Mohammed El
Saravanan, R. Agilesh
description Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO 2 substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm × 25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈ - 3 dB), TARC (≈ - 42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band.
doi_str_mv 10.1007/s12633-023-02622-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920006555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920006555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f9850b8c921b05736eb97bfe201969a4255d4db30baa26b743ce3954d17405d03</originalsourceid><addsrcrecordid>eNp9kc9Kw0AQxoMoKOoLeBrwoofU_ZNNssda_ActFazobdnNTjTSJnV3K9ST7-DB9_NJ3FrRmwPDzOGb3wfzJckBJT1KSHHiKcs5Twlbdc5YSjaSHVoWeSolLTd_d3K_nex7_0RicVaUudxJPq7R1Z2b6bZC6Ld6uvSNh64GDdePXejapoKBW_qgpx7OZgatRQt3jUWjWwtHtJfRz7d33iMwuXw9hnOnq6iF0dVoHHkB21bD-AUd3DRjBjcL44PTASGawgSdfkQXXuF0BevP59Om0qHpWr-XbNXREvd_5m5ye342GVymw_HF1aA_TCtWkJDWshTElJVk1BBR8ByNLEyNjFCZS50xIWxmDSdGa5abIuMVcikyS4uMCEv4bnK45s5d97xAH9RTt3DxD14xyeKjciFEVLG1qnKd9w5rNXfNTLulokStMlDrDFTMQH1noFZovj7yUdw-oPtD_3P1BdB7iLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920006555</pqid></control><display><type>article</type><title>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</title><source>AUTh Library subscriptions: ProQuest Central</source><source>Springer Journals</source><creator>Babu, K. Vasu ; Sree, Gorre Naga Jyothi ; Islam, Tanvir ; Das, Sudipta ; Ghzaoui, Mohammed El ; Saravanan, R. Agilesh</creator><creatorcontrib>Babu, K. Vasu ; Sree, Gorre Naga Jyothi ; Islam, Tanvir ; Das, Sudipta ; Ghzaoui, Mohammed El ; Saravanan, R. Agilesh</creatorcontrib><description>Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO 2 substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm × 25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈ - 3 dB), TARC (≈ - 42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-023-02622-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Antennas ; Atmospheric attenuation ; Bandwidths ; Chemistry ; Chemistry and Materials Science ; Communication ; Communications systems ; Electrical resistivity ; Environmental Chemistry ; Explosives detection ; Fractals ; Frequency spectrum ; Graphene ; Inorganic Chemistry ; Lasers ; Materials Science ; Medical imaging ; MIMO communication ; Near field communication ; Optical Devices ; Optics ; Patch antennas ; Photonic band gaps ; Photonic crystals ; Photonics ; Polymer Sciences ; Radiators ; Resonant frequencies ; Silicon dioxide ; Spectrum allocation ; Substrates ; Terahertz frequencies ; Wireless communications</subject><ispartof>SILICON, 2023-12, Vol.15 (18), p.7823-7836</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f9850b8c921b05736eb97bfe201969a4255d4db30baa26b743ce3954d17405d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-023-02622-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920006555?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Babu, K. Vasu</creatorcontrib><creatorcontrib>Sree, Gorre Naga Jyothi</creatorcontrib><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Das, Sudipta</creatorcontrib><creatorcontrib>Ghzaoui, Mohammed El</creatorcontrib><creatorcontrib>Saravanan, R. Agilesh</creatorcontrib><title>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</title><title>SILICON</title><addtitle>Silicon</addtitle><description>Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO 2 substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm × 25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈ - 3 dB), TARC (≈ - 42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band.</description><subject>Antennas</subject><subject>Atmospheric attenuation</subject><subject>Bandwidths</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Electrical resistivity</subject><subject>Environmental Chemistry</subject><subject>Explosives detection</subject><subject>Fractals</subject><subject>Frequency spectrum</subject><subject>Graphene</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Medical imaging</subject><subject>MIMO communication</subject><subject>Near field communication</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Patch antennas</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Radiators</subject><subject>Resonant frequencies</subject><subject>Silicon dioxide</subject><subject>Spectrum allocation</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Wireless communications</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9Kw0AQxoMoKOoLeBrwoofU_ZNNssda_ActFazobdnNTjTSJnV3K9ST7-DB9_NJ3FrRmwPDzOGb3wfzJckBJT1KSHHiKcs5Twlbdc5YSjaSHVoWeSolLTd_d3K_nex7_0RicVaUudxJPq7R1Z2b6bZC6Ld6uvSNh64GDdePXejapoKBW_qgpx7OZgatRQt3jUWjWwtHtJfRz7d33iMwuXw9hnOnq6iF0dVoHHkB21bD-AUd3DRjBjcL44PTASGawgSdfkQXXuF0BevP59Om0qHpWr-XbNXREvd_5m5ye342GVymw_HF1aA_TCtWkJDWshTElJVk1BBR8ByNLEyNjFCZS50xIWxmDSdGa5abIuMVcikyS4uMCEv4bnK45s5d97xAH9RTt3DxD14xyeKjciFEVLG1qnKd9w5rNXfNTLulokStMlDrDFTMQH1noFZovj7yUdw-oPtD_3P1BdB7iLY</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Babu, K. Vasu</creator><creator>Sree, Gorre Naga Jyothi</creator><creator>Islam, Tanvir</creator><creator>Das, Sudipta</creator><creator>Ghzaoui, Mohammed El</creator><creator>Saravanan, R. Agilesh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231201</creationdate><title>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</title><author>Babu, K. Vasu ; Sree, Gorre Naga Jyothi ; Islam, Tanvir ; Das, Sudipta ; Ghzaoui, Mohammed El ; Saravanan, R. Agilesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f9850b8c921b05736eb97bfe201969a4255d4db30baa26b743ce3954d17405d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Atmospheric attenuation</topic><topic>Bandwidths</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Electrical resistivity</topic><topic>Environmental Chemistry</topic><topic>Explosives detection</topic><topic>Fractals</topic><topic>Frequency spectrum</topic><topic>Graphene</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Medical imaging</topic><topic>MIMO communication</topic><topic>Near field communication</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Patch antennas</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Radiators</topic><topic>Resonant frequencies</topic><topic>Silicon dioxide</topic><topic>Spectrum allocation</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, K. Vasu</creatorcontrib><creatorcontrib>Sree, Gorre Naga Jyothi</creatorcontrib><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Das, Sudipta</creatorcontrib><creatorcontrib>Ghzaoui, Mohammed El</creatorcontrib><creatorcontrib>Saravanan, R. Agilesh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, K. Vasu</au><au>Sree, Gorre Naga Jyothi</au><au>Islam, Tanvir</au><au>Das, Sudipta</au><au>Ghzaoui, Mohammed El</au><au>Saravanan, R. Agilesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><spage>7823</spage><epage>7836</epage><pages>7823-7836</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>Advances in recent communication systems require minimal weight, low cost, high performance and low-profile antenna to meet the demand for next generation wireless communication devices. Due to the saturation velocity, high electrical conductivity and high mobility, graphene patch antennas are preferably used in the Terahertz band region (THz). On the other hand, MIMO antenna is usually required to compensate for the high path losses and atmospheric attenuation in THz frequency band spectrum and to offer higher data rates. In this work, a fractal MIMO antenna structure is placed on SiO 2 substrate embedded with Photonic Band Gap crystal (PBG). The designed MIMO antenna structure obtains an impedance bandwidth of 1590 GHz covering an effective frequency spectrum from 1.41 to 3.0 THz with a fractional bandwidth of 72.10%. Furthermore, the proposed antenna offers peak radiation efficiency of 74.5% and gain of 4.60 dBi at the resonant frequency of 1.89 THz. The proposed MIMO antenna achieves isolation levels of greater than 25 dB throughout the entire working band and also maintains a compact dimensions of only 38 μm × 25 μm. The suggested photonic crystal-based MIMO antenna offers superior MIMO metrics like ECC ≈ (0.00000000156), DG (≈10 dB), MEG (≈ - 3 dB), TARC (≈ - 42 dB) and CCL (≈0.00000000465 b/Hz/sec) at the resonant frequency of 1.89 THz. Hence, the prescribed MIMO radiator can be utilized for various applications such as threat detection, material characterization, near field communication, detection of explosive and medical imaging in the terahertz band.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-023-02622-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2023-12, Vol.15 (18), p.7823-7836
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2920006555
source AUTh Library subscriptions: ProQuest Central; Springer Journals
subjects Antennas
Atmospheric attenuation
Bandwidths
Chemistry
Chemistry and Materials Science
Communication
Communications systems
Electrical resistivity
Environmental Chemistry
Explosives detection
Fractals
Frequency spectrum
Graphene
Inorganic Chemistry
Lasers
Materials Science
Medical imaging
MIMO communication
Near field communication
Optical Devices
Optics
Patch antennas
Photonic band gaps
Photonic crystals
Photonics
Polymer Sciences
Radiators
Resonant frequencies
Silicon dioxide
Spectrum allocation
Substrates
Terahertz frequencies
Wireless communications
title Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20a%20Photonic%20Crystals%20Embedded%20Wideband%20(1.41%E2%80%933.0%20THz)%20Fractal%20MIMO%20Antenna%20Over%20SiO2%20Substrate%20for%20Terahertz%20Band%20Applications&rft.jtitle=SILICON&rft.au=Babu,%20K.%20Vasu&rft.date=2023-12-01&rft.volume=15&rft.issue=18&rft.spage=7823&rft.epage=7836&rft.pages=7823-7836&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-023-02622-0&rft_dat=%3Cproquest_cross%3E2920006555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920006555&rft_id=info:pmid/&rfr_iscdi=true