Real-time smart monitoring system for atrial fibrillation pathology

Atrial Fibrillation (AF) is a common cardiac pathology and, due to its unpredictability, it sometimes remains not detected. Aim of this work is to present a new version of the already published eHealth system, that includes a new real-time Android application for AF detection and monitoring. The pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2021-04, Vol.12 (4), p.4461-4469
Hauptverfasser: Pierleoni, Paola, Belli, Alberto, Gentili, Andrea, Incipini, Lorenzo, Palma, Lorenzo, Raggiunto, Sara, Sbrollini, Agnese, Burattini, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4469
container_issue 4
container_start_page 4461
container_title Journal of ambient intelligence and humanized computing
container_volume 12
creator Pierleoni, Paola
Belli, Alberto
Gentili, Andrea
Incipini, Lorenzo
Palma, Lorenzo
Raggiunto, Sara
Sbrollini, Agnese
Burattini, Laura
description Atrial Fibrillation (AF) is a common cardiac pathology and, due to its unpredictability, it sometimes remains not detected. Aim of this work is to present a new version of the already published eHealth system, that includes a new real-time Android application for AF detection and monitoring. The proposed eHealth system is composed of a commercial wearable sensor device (Bioharness 3.0 by Zephyr) for cardiac monitoring and a specially developed Android smartphone application. This application is able to real-time processing the raw data sensed from the wearable sensor, providing stress detection, calories consumption estimation, sinus arrhythmia detection, sinus rhythm classification, and apnea detection. As novelty, the new smartphone application also implemented a SVM-based algorithm designed to detect AF episodes by handling electrocardiogram and the heart-rate sequence of the subjects. The performance of the new SVM-based algorithm implemented in eHealth was tested on AF recordings and evaluated in term of sensitivity and specificity. The results show a sensitivity of 78% and a specificity of 66%, making this version of eHealth system suitable for real-time monitoring of AF events.
doi_str_mv 10.1007/s12652-019-01602-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919990005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919990005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5d90f8da5c4b872ab2b106314157bdef396c0428f1f97afb702917c7baa9177c3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgqf0DnhY8R_OS3c3mKMWPQkEQPYdkm9SU3c2apJT-e1NX9OaDx7zDzDxmELoGcguE8LsItK4oJiDy1oTiwxmaQVM3uIKyOv-9Gb9Eixh3JA8TDABmaPlqVIeT600RexVS0fvBJR_csC3iMSbTF9aHQqXgVFdYp4PrOpWcH4pRpQ_f-e3xCl1Y1UWz-ME5en98eFs-4_XL02p5v8YtA5FwtRHENhtVtaVuOFWaaiA1gxIqrjfGMlG3pKSNBSu4spoTKoC3XCuVkbdsjm4m3zH4z72JSe78Pgz5pcxMIUTOVWUWnVht8DEGY-UYXI52lEDkqS859SVzX_K7L3nIIjaJ4niKbsKf9T-qL2WqbiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919990005</pqid></control><display><type>article</type><title>Real-time smart monitoring system for atrial fibrillation pathology</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Pierleoni, Paola ; Belli, Alberto ; Gentili, Andrea ; Incipini, Lorenzo ; Palma, Lorenzo ; Raggiunto, Sara ; Sbrollini, Agnese ; Burattini, Laura</creator><creatorcontrib>Pierleoni, Paola ; Belli, Alberto ; Gentili, Andrea ; Incipini, Lorenzo ; Palma, Lorenzo ; Raggiunto, Sara ; Sbrollini, Agnese ; Burattini, Laura</creatorcontrib><description>Atrial Fibrillation (AF) is a common cardiac pathology and, due to its unpredictability, it sometimes remains not detected. Aim of this work is to present a new version of the already published eHealth system, that includes a new real-time Android application for AF detection and monitoring. The proposed eHealth system is composed of a commercial wearable sensor device (Bioharness 3.0 by Zephyr) for cardiac monitoring and a specially developed Android smartphone application. This application is able to real-time processing the raw data sensed from the wearable sensor, providing stress detection, calories consumption estimation, sinus arrhythmia detection, sinus rhythm classification, and apnea detection. As novelty, the new smartphone application also implemented a SVM-based algorithm designed to detect AF episodes by handling electrocardiogram and the heart-rate sequence of the subjects. The performance of the new SVM-based algorithm implemented in eHealth was tested on AF recordings and evaluated in term of sensitivity and specificity. The results show a sensitivity of 78% and a specificity of 66%, making this version of eHealth system suitable for real-time monitoring of AF events.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-019-01602-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Cardiac arrhythmia ; Classification ; Computational Intelligence ; Electrocardiography ; Engineering ; Fibrillation ; Heart ; Heart rate ; Monitoring ; Monitoring systems ; Original Research ; Pathology ; Patients ; Real time ; Robotics and Automation ; Sensors ; Signal processing ; Sinuses ; Smartphones ; Software ; User Interfaces and Human Computer Interaction ; Wearable technology</subject><ispartof>Journal of ambient intelligence and humanized computing, 2021-04, Vol.12 (4), p.4461-4469</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5d90f8da5c4b872ab2b106314157bdef396c0428f1f97afb702917c7baa9177c3</citedby><cites>FETCH-LOGICAL-c319t-5d90f8da5c4b872ab2b106314157bdef396c0428f1f97afb702917c7baa9177c3</cites><orcidid>0000-0002-9692-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-019-01602-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919990005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Pierleoni, Paola</creatorcontrib><creatorcontrib>Belli, Alberto</creatorcontrib><creatorcontrib>Gentili, Andrea</creatorcontrib><creatorcontrib>Incipini, Lorenzo</creatorcontrib><creatorcontrib>Palma, Lorenzo</creatorcontrib><creatorcontrib>Raggiunto, Sara</creatorcontrib><creatorcontrib>Sbrollini, Agnese</creatorcontrib><creatorcontrib>Burattini, Laura</creatorcontrib><title>Real-time smart monitoring system for atrial fibrillation pathology</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Atrial Fibrillation (AF) is a common cardiac pathology and, due to its unpredictability, it sometimes remains not detected. Aim of this work is to present a new version of the already published eHealth system, that includes a new real-time Android application for AF detection and monitoring. The proposed eHealth system is composed of a commercial wearable sensor device (Bioharness 3.0 by Zephyr) for cardiac monitoring and a specially developed Android smartphone application. This application is able to real-time processing the raw data sensed from the wearable sensor, providing stress detection, calories consumption estimation, sinus arrhythmia detection, sinus rhythm classification, and apnea detection. As novelty, the new smartphone application also implemented a SVM-based algorithm designed to detect AF episodes by handling electrocardiogram and the heart-rate sequence of the subjects. The performance of the new SVM-based algorithm implemented in eHealth was tested on AF recordings and evaluated in term of sensitivity and specificity. The results show a sensitivity of 78% and a specificity of 66%, making this version of eHealth system suitable for real-time monitoring of AF events.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Electrocardiography</subject><subject>Engineering</subject><subject>Fibrillation</subject><subject>Heart</subject><subject>Heart rate</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Original Research</subject><subject>Pathology</subject><subject>Patients</subject><subject>Real time</subject><subject>Robotics and Automation</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Sinuses</subject><subject>Smartphones</subject><subject>Software</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Wearable technology</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1LAzEUDKJgqf0DnhY8R_OS3c3mKMWPQkEQPYdkm9SU3c2apJT-e1NX9OaDx7zDzDxmELoGcguE8LsItK4oJiDy1oTiwxmaQVM3uIKyOv-9Gb9Eixh3JA8TDABmaPlqVIeT600RexVS0fvBJR_csC3iMSbTF9aHQqXgVFdYp4PrOpWcH4pRpQ_f-e3xCl1Y1UWz-ME5en98eFs-4_XL02p5v8YtA5FwtRHENhtVtaVuOFWaaiA1gxIqrjfGMlG3pKSNBSu4spoTKoC3XCuVkbdsjm4m3zH4z72JSe78Pgz5pcxMIUTOVWUWnVht8DEGY-UYXI52lEDkqS859SVzX_K7L3nIIjaJ4niKbsKf9T-qL2WqbiY</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Pierleoni, Paola</creator><creator>Belli, Alberto</creator><creator>Gentili, Andrea</creator><creator>Incipini, Lorenzo</creator><creator>Palma, Lorenzo</creator><creator>Raggiunto, Sara</creator><creator>Sbrollini, Agnese</creator><creator>Burattini, Laura</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9692-582X</orcidid></search><sort><creationdate>20210401</creationdate><title>Real-time smart monitoring system for atrial fibrillation pathology</title><author>Pierleoni, Paola ; Belli, Alberto ; Gentili, Andrea ; Incipini, Lorenzo ; Palma, Lorenzo ; Raggiunto, Sara ; Sbrollini, Agnese ; Burattini, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5d90f8da5c4b872ab2b106314157bdef396c0428f1f97afb702917c7baa9177c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Electrocardiography</topic><topic>Engineering</topic><topic>Fibrillation</topic><topic>Heart</topic><topic>Heart rate</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Original Research</topic><topic>Pathology</topic><topic>Patients</topic><topic>Real time</topic><topic>Robotics and Automation</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Sinuses</topic><topic>Smartphones</topic><topic>Software</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierleoni, Paola</creatorcontrib><creatorcontrib>Belli, Alberto</creatorcontrib><creatorcontrib>Gentili, Andrea</creatorcontrib><creatorcontrib>Incipini, Lorenzo</creatorcontrib><creatorcontrib>Palma, Lorenzo</creatorcontrib><creatorcontrib>Raggiunto, Sara</creatorcontrib><creatorcontrib>Sbrollini, Agnese</creatorcontrib><creatorcontrib>Burattini, Laura</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierleoni, Paola</au><au>Belli, Alberto</au><au>Gentili, Andrea</au><au>Incipini, Lorenzo</au><au>Palma, Lorenzo</au><au>Raggiunto, Sara</au><au>Sbrollini, Agnese</au><au>Burattini, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time smart monitoring system for atrial fibrillation pathology</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>12</volume><issue>4</issue><spage>4461</spage><epage>4469</epage><pages>4461-4469</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Atrial Fibrillation (AF) is a common cardiac pathology and, due to its unpredictability, it sometimes remains not detected. Aim of this work is to present a new version of the already published eHealth system, that includes a new real-time Android application for AF detection and monitoring. The proposed eHealth system is composed of a commercial wearable sensor device (Bioharness 3.0 by Zephyr) for cardiac monitoring and a specially developed Android smartphone application. This application is able to real-time processing the raw data sensed from the wearable sensor, providing stress detection, calories consumption estimation, sinus arrhythmia detection, sinus rhythm classification, and apnea detection. As novelty, the new smartphone application also implemented a SVM-based algorithm designed to detect AF episodes by handling electrocardiogram and the heart-rate sequence of the subjects. The performance of the new SVM-based algorithm implemented in eHealth was tested on AF recordings and evaluated in term of sensitivity and specificity. The results show a sensitivity of 78% and a specificity of 66%, making this version of eHealth system suitable for real-time monitoring of AF events.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-019-01602-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9692-582X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2021-04, Vol.12 (4), p.4461-4469
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919990005
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Cardiac arrhythmia
Classification
Computational Intelligence
Electrocardiography
Engineering
Fibrillation
Heart
Heart rate
Monitoring
Monitoring systems
Original Research
Pathology
Patients
Real time
Robotics and Automation
Sensors
Signal processing
Sinuses
Smartphones
Software
User Interfaces and Human Computer Interaction
Wearable technology
title Real-time smart monitoring system for atrial fibrillation pathology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20smart%20monitoring%20system%20for%20atrial%20fibrillation%20pathology&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Pierleoni,%20Paola&rft.date=2021-04-01&rft.volume=12&rft.issue=4&rft.spage=4461&rft.epage=4469&rft.pages=4461-4469&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-019-01602-w&rft_dat=%3Cproquest_cross%3E2919990005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919990005&rft_id=info:pmid/&rfr_iscdi=true