Contextual outlier detection for wireless sensor networks

The quality of dataset measured and collected by wireless sensor networks (WSN) is often affected by noise and error that are inherent to resource-constrained sensor nodes. The affected data points deviating from the normal pattern are termed as outlier(s). However, detected outlier can be a result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2020-04, Vol.11 (4), p.1511-1530
Hauptverfasser: Bharti, Sourabh, Pattanaik, K. K., Pandey, Anshul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1530
container_issue 4
container_start_page 1511
container_title Journal of ambient intelligence and humanized computing
container_volume 11
creator Bharti, Sourabh
Pattanaik, K. K.
Pandey, Anshul
description The quality of dataset measured and collected by wireless sensor networks (WSN) is often affected by noise and error that are inherent to resource-constrained sensor nodes. The affected data points deviating from the normal pattern are termed as outlier(s). However, detected outlier can be a result of the occurrence of an actual event. Outlier detection techniques developed for WSNs perform binary labelling of the data points and does not indicate the context stating whether the outlier is the result of an actual event or the noise/error. This paper proposes a contextual outlier detection framework specifically designed for WSNs named as in-network contextual outlier detection on edge (INCODE). The proposed framework also estimates the degree of outlierness associated with the detected outlier(s) to provide better insight into the measured data point. Algorithms used in INCODE are designed around the edge computing concept to minimize the communication and computational complexities to make it suitable for resource-constrained WSN. The results suggest an impressive 98% accuracy in identifying the context of the outlier(s). The low communication and computational complexity suggest INCODE’s suitability for resource constrained WSNs.
doi_str_mv 10.1007/s12652-019-01194-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919986943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919986943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a4bcf163b1831d9c626d3e16ed8fdf2c453bd419909b9239d487b7f06fb868933</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwVPFczTZp2jrL4BQte9BzaZiJda7MmKav_3qwVvTkwzAy8z8zwMnYO_BI4r64CFKoscg6YElDm5RFbQK3qvARZHv_2ojplqxC2PIVAAQALhms3RvqIUzNkbopDTz4zFKmLvRsz63y27z0NFEIWaAxpHinunX8NZ-zENkOg1U9dsufbm6f1fb55vHtYX2_yTgDGvJFtZ0GJFmoBBjtVKCMIFJnaGlt0shStkYDIscVCoJF11VaWK9umr1GIJbuY9-68e58oRL11kx_TSV1g4mqF8qAqZlXnXQierN75_q3xnxq4PrikZ5d0ckl_u6TLBIkZCkk8vpD_W_0P9QVE6Wnv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919986943</pqid></control><display><type>article</type><title>Contextual outlier detection for wireless sensor networks</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Bharti, Sourabh ; Pattanaik, K. K. ; Pandey, Anshul</creator><creatorcontrib>Bharti, Sourabh ; Pattanaik, K. K. ; Pandey, Anshul</creatorcontrib><description>The quality of dataset measured and collected by wireless sensor networks (WSN) is often affected by noise and error that are inherent to resource-constrained sensor nodes. The affected data points deviating from the normal pattern are termed as outlier(s). However, detected outlier can be a result of the occurrence of an actual event. Outlier detection techniques developed for WSNs perform binary labelling of the data points and does not indicate the context stating whether the outlier is the result of an actual event or the noise/error. This paper proposes a contextual outlier detection framework specifically designed for WSNs named as in-network contextual outlier detection on edge (INCODE). The proposed framework also estimates the degree of outlierness associated with the detected outlier(s) to provide better insight into the measured data point. Algorithms used in INCODE are designed around the edge computing concept to minimize the communication and computational complexities to make it suitable for resource-constrained WSN. The results suggest an impressive 98% accuracy in identifying the context of the outlier(s). The low communication and computational complexity suggest INCODE’s suitability for resource constrained WSNs.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-019-01194-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Community ; Computational Intelligence ; Context ; Data analysis ; Data points ; Edge computing ; Energy consumption ; Engineering ; Labeling ; Original Research ; Outliers (statistics) ; Robotics and Automation ; Sensors ; User Interfaces and Human Computer Interaction ; Wireless sensor networks</subject><ispartof>Journal of ambient intelligence and humanized computing, 2020-04, Vol.11 (4), p.1511-1530</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a4bcf163b1831d9c626d3e16ed8fdf2c453bd419909b9239d487b7f06fb868933</citedby><cites>FETCH-LOGICAL-c319t-a4bcf163b1831d9c626d3e16ed8fdf2c453bd419909b9239d487b7f06fb868933</cites><orcidid>0000-0002-3135-6339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-019-01194-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919986943?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Bharti, Sourabh</creatorcontrib><creatorcontrib>Pattanaik, K. K.</creatorcontrib><creatorcontrib>Pandey, Anshul</creatorcontrib><title>Contextual outlier detection for wireless sensor networks</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>The quality of dataset measured and collected by wireless sensor networks (WSN) is often affected by noise and error that are inherent to resource-constrained sensor nodes. The affected data points deviating from the normal pattern are termed as outlier(s). However, detected outlier can be a result of the occurrence of an actual event. Outlier detection techniques developed for WSNs perform binary labelling of the data points and does not indicate the context stating whether the outlier is the result of an actual event or the noise/error. This paper proposes a contextual outlier detection framework specifically designed for WSNs named as in-network contextual outlier detection on edge (INCODE). The proposed framework also estimates the degree of outlierness associated with the detected outlier(s) to provide better insight into the measured data point. Algorithms used in INCODE are designed around the edge computing concept to minimize the communication and computational complexities to make it suitable for resource-constrained WSN. The results suggest an impressive 98% accuracy in identifying the context of the outlier(s). The low communication and computational complexity suggest INCODE’s suitability for resource constrained WSNs.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Community</subject><subject>Computational Intelligence</subject><subject>Context</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Labeling</subject><subject>Original Research</subject><subject>Outliers (statistics)</subject><subject>Robotics and Automation</subject><subject>Sensors</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Wireless sensor networks</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwVPFczTZp2jrL4BQte9BzaZiJda7MmKav_3qwVvTkwzAy8z8zwMnYO_BI4r64CFKoscg6YElDm5RFbQK3qvARZHv_2ojplqxC2PIVAAQALhms3RvqIUzNkbopDTz4zFKmLvRsz63y27z0NFEIWaAxpHinunX8NZ-zENkOg1U9dsufbm6f1fb55vHtYX2_yTgDGvJFtZ0GJFmoBBjtVKCMIFJnaGlt0shStkYDIscVCoJF11VaWK9umr1GIJbuY9-68e58oRL11kx_TSV1g4mqF8qAqZlXnXQierN75_q3xnxq4PrikZ5d0ckl_u6TLBIkZCkk8vpD_W_0P9QVE6Wnv</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bharti, Sourabh</creator><creator>Pattanaik, K. K.</creator><creator>Pandey, Anshul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3135-6339</orcidid></search><sort><creationdate>20200401</creationdate><title>Contextual outlier detection for wireless sensor networks</title><author>Bharti, Sourabh ; Pattanaik, K. K. ; Pandey, Anshul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a4bcf163b1831d9c626d3e16ed8fdf2c453bd419909b9239d487b7f06fb868933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Community</topic><topic>Computational Intelligence</topic><topic>Context</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Labeling</topic><topic>Original Research</topic><topic>Outliers (statistics)</topic><topic>Robotics and Automation</topic><topic>Sensors</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharti, Sourabh</creatorcontrib><creatorcontrib>Pattanaik, K. K.</creatorcontrib><creatorcontrib>Pandey, Anshul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharti, Sourabh</au><au>Pattanaik, K. K.</au><au>Pandey, Anshul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextual outlier detection for wireless sensor networks</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>1511</spage><epage>1530</epage><pages>1511-1530</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>The quality of dataset measured and collected by wireless sensor networks (WSN) is often affected by noise and error that are inherent to resource-constrained sensor nodes. The affected data points deviating from the normal pattern are termed as outlier(s). However, detected outlier can be a result of the occurrence of an actual event. Outlier detection techniques developed for WSNs perform binary labelling of the data points and does not indicate the context stating whether the outlier is the result of an actual event or the noise/error. This paper proposes a contextual outlier detection framework specifically designed for WSNs named as in-network contextual outlier detection on edge (INCODE). The proposed framework also estimates the degree of outlierness associated with the detected outlier(s) to provide better insight into the measured data point. Algorithms used in INCODE are designed around the edge computing concept to minimize the communication and computational complexities to make it suitable for resource-constrained WSN. The results suggest an impressive 98% accuracy in identifying the context of the outlier(s). The low communication and computational complexity suggest INCODE’s suitability for resource constrained WSNs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-019-01194-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3135-6339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2020-04, Vol.11 (4), p.1511-1530
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919986943
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Community
Computational Intelligence
Context
Data analysis
Data points
Edge computing
Energy consumption
Engineering
Labeling
Original Research
Outliers (statistics)
Robotics and Automation
Sensors
User Interfaces and Human Computer Interaction
Wireless sensor networks
title Contextual outlier detection for wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextual%20outlier%20detection%20for%20wireless%20sensor%20networks&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Bharti,%20Sourabh&rft.date=2020-04-01&rft.volume=11&rft.issue=4&rft.spage=1511&rft.epage=1530&rft.pages=1511-1530&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-019-01194-5&rft_dat=%3Cproquest_cross%3E2919986943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919986943&rft_id=info:pmid/&rfr_iscdi=true