Path-based estimation for link prediction

Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2021-09, Vol.12 (9), p.2443-2458
Hauptverfasser: Ma, Guoshuai, Yan, Hongren, Qian, Yuhua, Wang, Lingfeng, Dang, Chuangyin, Zhao, Zhongying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2458
container_issue 9
container_start_page 2443
container_title International journal of machine learning and cybernetics
container_volume 12
creator Ma, Guoshuai
Yan, Hongren
Qian, Yuhua
Wang, Lingfeng
Dang, Chuangyin
Zhao, Zhongying
description Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods.
doi_str_mv 10.1007/s13042-021-01312-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919967452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919967452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFTx6iM8luNjlKUSsU9KDgLaT5o1vr7ppsKX57U1f05lxmGN6befwIOUW4QID6MiGHklFgSAE5Mro7IBOUQlIJ8vnwd67xmMxSWkMuAZwDm5DzBzO80pVJ3hU-Dc27GZquLUIXi03TvhV99K6x-90JOQpmk_zsp0_J083143xBl_e3d_OrJbUc1UCFCKVzktVVWTlnPDLwznAGgTsmvbVBKB9EBXzllGKWByN5JbBE4ypTIp-Ss_FuH7uPbc6k1902tvmlZgqVEnVZsaxio8rGLqXog-5jDh8_NYLeU9EjFZ2p6G8qepdNfDSlLG5ffPw7_Y_rCyzJZBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919967452</pqid></control><display><type>article</type><title>Path-based estimation for link prediction</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ma, Guoshuai ; Yan, Hongren ; Qian, Yuhua ; Wang, Lingfeng ; Dang, Chuangyin ; Zhao, Zhongying</creator><creatorcontrib>Ma, Guoshuai ; Yan, Hongren ; Qian, Yuhua ; Wang, Lingfeng ; Dang, Chuangyin ; Zhao, Zhongying</creatorcontrib><description>Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-021-01312-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Mechatronics ; Methods ; Network topologies ; Nodes ; Original Article ; Pattern Recognition ; Preferences ; Probabilistic models ; Qualitative analysis ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2021-09, Vol.12 (9), p.2443-2458</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</citedby><cites>FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</cites><orcidid>0000-0001-6772-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-021-01312-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919967452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Ma, Guoshuai</creatorcontrib><creatorcontrib>Yan, Hongren</creatorcontrib><creatorcontrib>Qian, Yuhua</creatorcontrib><creatorcontrib>Wang, Lingfeng</creatorcontrib><creatorcontrib>Dang, Chuangyin</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><title>Path-based estimation for link prediction</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Network topologies</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Preferences</subject><subject>Probabilistic models</subject><subject>Qualitative analysis</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKcFTx6iM8luNjlKUSsU9KDgLaT5o1vr7ppsKX57U1f05lxmGN6befwIOUW4QID6MiGHklFgSAE5Mro7IBOUQlIJ8vnwd67xmMxSWkMuAZwDm5DzBzO80pVJ3hU-Dc27GZquLUIXi03TvhV99K6x-90JOQpmk_zsp0_J083143xBl_e3d_OrJbUc1UCFCKVzktVVWTlnPDLwznAGgTsmvbVBKB9EBXzllGKWByN5JbBE4ypTIp-Ss_FuH7uPbc6k1902tvmlZgqVEnVZsaxio8rGLqXog-5jDh8_NYLeU9EjFZ2p6G8qepdNfDSlLG5ffPw7_Y_rCyzJZBo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ma, Guoshuai</creator><creator>Yan, Hongren</creator><creator>Qian, Yuhua</creator><creator>Wang, Lingfeng</creator><creator>Dang, Chuangyin</creator><creator>Zhao, Zhongying</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6772-4247</orcidid></search><sort><creationdate>20210901</creationdate><title>Path-based estimation for link prediction</title><author>Ma, Guoshuai ; Yan, Hongren ; Qian, Yuhua ; Wang, Lingfeng ; Dang, Chuangyin ; Zhao, Zhongying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Network topologies</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Preferences</topic><topic>Probabilistic models</topic><topic>Qualitative analysis</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Guoshuai</creatorcontrib><creatorcontrib>Yan, Hongren</creatorcontrib><creatorcontrib>Qian, Yuhua</creatorcontrib><creatorcontrib>Wang, Lingfeng</creatorcontrib><creatorcontrib>Dang, Chuangyin</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Guoshuai</au><au>Yan, Hongren</au><au>Qian, Yuhua</au><au>Wang, Lingfeng</au><au>Dang, Chuangyin</au><au>Zhao, Zhongying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path-based estimation for link prediction</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>12</volume><issue>9</issue><spage>2443</spage><epage>2458</epage><pages>2443-2458</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-021-01312-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6772-4247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2021-09, Vol.12 (9), p.2443-2458
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919967452
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Engineering
Mechatronics
Methods
Network topologies
Nodes
Original Article
Pattern Recognition
Preferences
Probabilistic models
Qualitative analysis
Robotics
Systems Biology
title Path-based estimation for link prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path-based%20estimation%20for%20link%20prediction&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Ma,%20Guoshuai&rft.date=2021-09-01&rft.volume=12&rft.issue=9&rft.spage=2443&rft.epage=2458&rft.pages=2443-2458&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-021-01312-w&rft_dat=%3Cproquest_cross%3E2919967452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919967452&rft_id=info:pmid/&rfr_iscdi=true