Path-based estimation for link prediction
Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based prob...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2021-09, Vol.12 (9), p.2443-2458 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2458 |
---|---|
container_issue | 9 |
container_start_page | 2443 |
container_title | International journal of machine learning and cybernetics |
container_volume | 12 |
creator | Ma, Guoshuai Yan, Hongren Qian, Yuhua Wang, Lingfeng Dang, Chuangyin Zhao, Zhongying |
description | Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods. |
doi_str_mv | 10.1007/s13042-021-01312-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919967452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919967452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFTx6iM8luNjlKUSsU9KDgLaT5o1vr7ppsKX57U1f05lxmGN6befwIOUW4QID6MiGHklFgSAE5Mro7IBOUQlIJ8vnwd67xmMxSWkMuAZwDm5DzBzO80pVJ3hU-Dc27GZquLUIXi03TvhV99K6x-90JOQpmk_zsp0_J083143xBl_e3d_OrJbUc1UCFCKVzktVVWTlnPDLwznAGgTsmvbVBKB9EBXzllGKWByN5JbBE4ypTIp-Ss_FuH7uPbc6k1902tvmlZgqVEnVZsaxio8rGLqXog-5jDh8_NYLeU9EjFZ2p6G8qepdNfDSlLG5ffPw7_Y_rCyzJZBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919967452</pqid></control><display><type>article</type><title>Path-based estimation for link prediction</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ma, Guoshuai ; Yan, Hongren ; Qian, Yuhua ; Wang, Lingfeng ; Dang, Chuangyin ; Zhao, Zhongying</creator><creatorcontrib>Ma, Guoshuai ; Yan, Hongren ; Qian, Yuhua ; Wang, Lingfeng ; Dang, Chuangyin ; Zhao, Zhongying</creatorcontrib><description>Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-021-01312-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Mechatronics ; Methods ; Network topologies ; Nodes ; Original Article ; Pattern Recognition ; Preferences ; Probabilistic models ; Qualitative analysis ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2021-09, Vol.12 (9), p.2443-2458</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</citedby><cites>FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</cites><orcidid>0000-0001-6772-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-021-01312-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919967452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Ma, Guoshuai</creatorcontrib><creatorcontrib>Yan, Hongren</creatorcontrib><creatorcontrib>Qian, Yuhua</creatorcontrib><creatorcontrib>Wang, Lingfeng</creatorcontrib><creatorcontrib>Dang, Chuangyin</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><title>Path-based estimation for link prediction</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Network topologies</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Preferences</subject><subject>Probabilistic models</subject><subject>Qualitative analysis</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKcFTx6iM8luNjlKUSsU9KDgLaT5o1vr7ppsKX57U1f05lxmGN6befwIOUW4QID6MiGHklFgSAE5Mro7IBOUQlIJ8vnwd67xmMxSWkMuAZwDm5DzBzO80pVJ3hU-Dc27GZquLUIXi03TvhV99K6x-90JOQpmk_zsp0_J083143xBl_e3d_OrJbUc1UCFCKVzktVVWTlnPDLwznAGgTsmvbVBKB9EBXzllGKWByN5JbBE4ypTIp-Ss_FuH7uPbc6k1902tvmlZgqVEnVZsaxio8rGLqXog-5jDh8_NYLeU9EjFZ2p6G8qepdNfDSlLG5ffPw7_Y_rCyzJZBo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ma, Guoshuai</creator><creator>Yan, Hongren</creator><creator>Qian, Yuhua</creator><creator>Wang, Lingfeng</creator><creator>Dang, Chuangyin</creator><creator>Zhao, Zhongying</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6772-4247</orcidid></search><sort><creationdate>20210901</creationdate><title>Path-based estimation for link prediction</title><author>Ma, Guoshuai ; Yan, Hongren ; Qian, Yuhua ; Wang, Lingfeng ; Dang, Chuangyin ; Zhao, Zhongying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66f4dd827545ddae120eda320f3d28eccf69ef6503bd992c3fa8356141ad5a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Network topologies</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Preferences</topic><topic>Probabilistic models</topic><topic>Qualitative analysis</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Guoshuai</creatorcontrib><creatorcontrib>Yan, Hongren</creatorcontrib><creatorcontrib>Qian, Yuhua</creatorcontrib><creatorcontrib>Wang, Lingfeng</creatorcontrib><creatorcontrib>Dang, Chuangyin</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Guoshuai</au><au>Yan, Hongren</au><au>Qian, Yuhua</au><au>Wang, Lingfeng</au><au>Dang, Chuangyin</au><au>Zhao, Zhongying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path-based estimation for link prediction</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>12</volume><issue>9</issue><spage>2443</spage><epage>2458</epage><pages>2443-2458</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the network topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of different lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model outperforms competitive methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-021-01312-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6772-4247</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2021-09, Vol.12 (9), p.2443-2458 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2919967452 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Complex Systems Computational Intelligence Control Engineering Mechatronics Methods Network topologies Nodes Original Article Pattern Recognition Preferences Probabilistic models Qualitative analysis Robotics Systems Biology |
title | Path-based estimation for link prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path-based%20estimation%20for%20link%20prediction&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Ma,%20Guoshuai&rft.date=2021-09-01&rft.volume=12&rft.issue=9&rft.spage=2443&rft.epage=2458&rft.pages=2443-2458&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-021-01312-w&rft_dat=%3Cproquest_cross%3E2919967452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919967452&rft_id=info:pmid/&rfr_iscdi=true |