Special issue on deep learning in image and video retrieval

An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multimedia information retrieval 2020-06, Vol.9 (2), p.61-62
Hauptverfasser: Oerlemans, Ard, Guo, Yanming, Lew, Michael S., Chua, Tat-Seng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 2
container_start_page 61
container_title International journal of multimedia information retrieval
container_volume 9
creator Oerlemans, Ard
Guo, Yanming
Lew, Michael S.
Chua, Tat-Seng
description An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.
doi_str_mv 10.1007/s13735-020-00194-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919935670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919935670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9f180abc8b927e19cd4157b18ee90e5ed72387e63059224f0328a9bc4c76fe063</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSZs0eJLFf7DgQQVvIU2nS5ba1mR3Yb-90YrenMvM4b03jx8h5xwuOYC-SlxqWTIQwAC4KdjhiMwEN4IpJd6Of2_OT8kipQ3kqYTioGfk-nlEH1xHQ0o7pENPG8SRduhiH_o1DT0N726N1PUN3YcGBxpxGwPuXXdGTlrXJVz87Dl5vbt9WT6w1dP94_JmxbxUcstMyytwta9qIzRy45uCl7rmFaIBLLHRQlYalYTSCFG0IEXlTO0Lr1WLoOScXEy5Yxw-dpi2djPsYp9fWmG4MbJUGrJKTCofh5QitnaMuXo8WA72i5OdONnMyX5zsodskpMpZXG_xvgX_Y_rEwUgadI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919935670</pqid></control><display><type>article</type><title>Special issue on deep learning in image and video retrieval</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Oerlemans, Ard ; Guo, Yanming ; Lew, Michael S. ; Chua, Tat-Seng</creator><creatorcontrib>Oerlemans, Ard ; Guo, Yanming ; Lew, Michael S. ; Chua, Tat-Seng</creatorcontrib><description>An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.</description><identifier>ISSN: 2192-6611</identifier><identifier>EISSN: 2192-662X</identifier><identifier>DOI: 10.1007/s13735-020-00194-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Classification ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Deep learning ; Editorial ; Feature extraction ; Image Processing and Computer Vision ; Image retrieval ; Information Storage and Retrieval ; Information Systems Applications (incl.Internet) ; Machine learning ; Multimedia Information Systems ; Retrieval ; State-of-the-art reviews</subject><ispartof>International journal of multimedia information retrieval, 2020-06, Vol.9 (2), p.61-62</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9f180abc8b927e19cd4157b18ee90e5ed72387e63059224f0328a9bc4c76fe063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13735-020-00194-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919935670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Oerlemans, Ard</creatorcontrib><creatorcontrib>Guo, Yanming</creatorcontrib><creatorcontrib>Lew, Michael S.</creatorcontrib><creatorcontrib>Chua, Tat-Seng</creatorcontrib><title>Special issue on deep learning in image and video retrieval</title><title>International journal of multimedia information retrieval</title><addtitle>Int J Multimed Info Retr</addtitle><description>An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Deep learning</subject><subject>Editorial</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Retrieval</subject><subject>State-of-the-art reviews</subject><issn>2192-6611</issn><issn>2192-662X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSZs0eJLFf7DgQQVvIU2nS5ba1mR3Yb-90YrenMvM4b03jx8h5xwuOYC-SlxqWTIQwAC4KdjhiMwEN4IpJd6Of2_OT8kipQ3kqYTioGfk-nlEH1xHQ0o7pENPG8SRduhiH_o1DT0N726N1PUN3YcGBxpxGwPuXXdGTlrXJVz87Dl5vbt9WT6w1dP94_JmxbxUcstMyytwta9qIzRy45uCl7rmFaIBLLHRQlYalYTSCFG0IEXlTO0Lr1WLoOScXEy5Yxw-dpi2djPsYp9fWmG4MbJUGrJKTCofh5QitnaMuXo8WA72i5OdONnMyX5zsodskpMpZXG_xvgX_Y_rEwUgadI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Oerlemans, Ard</creator><creator>Guo, Yanming</creator><creator>Lew, Michael S.</creator><creator>Chua, Tat-Seng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>Special issue on deep learning in image and video retrieval</title><author>Oerlemans, Ard ; Guo, Yanming ; Lew, Michael S. ; Chua, Tat-Seng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9f180abc8b927e19cd4157b18ee90e5ed72387e63059224f0328a9bc4c76fe063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Deep learning</topic><topic>Editorial</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Retrieval</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oerlemans, Ard</creatorcontrib><creatorcontrib>Guo, Yanming</creatorcontrib><creatorcontrib>Lew, Michael S.</creatorcontrib><creatorcontrib>Chua, Tat-Seng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of multimedia information retrieval</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oerlemans, Ard</au><au>Guo, Yanming</au><au>Lew, Michael S.</au><au>Chua, Tat-Seng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Special issue on deep learning in image and video retrieval</atitle><jtitle>International journal of multimedia information retrieval</jtitle><stitle>Int J Multimed Info Retr</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>9</volume><issue>2</issue><spage>61</spage><epage>62</epage><pages>61-62</pages><issn>2192-6611</issn><eissn>2192-662X</eissn><abstract>An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s13735-020-00194-y</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-6611
ispartof International journal of multimedia information retrieval, 2020-06, Vol.9 (2), p.61-62
issn 2192-6611
2192-662X
language eng
recordid cdi_proquest_journals_2919935670
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Classification
Computer Science
Data Mining and Knowledge Discovery
Database Management
Deep learning
Editorial
Feature extraction
Image Processing and Computer Vision
Image retrieval
Information Storage and Retrieval
Information Systems Applications (incl.Internet)
Machine learning
Multimedia Information Systems
Retrieval
State-of-the-art reviews
title Special issue on deep learning in image and video retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Special%20issue%20on%20deep%20learning%20in%20image%20and%20video%20retrieval&rft.jtitle=International%20journal%20of%20multimedia%20information%20retrieval&rft.au=Oerlemans,%20Ard&rft.date=2020-06-01&rft.volume=9&rft.issue=2&rft.spage=61&rft.epage=62&rft.pages=61-62&rft.issn=2192-6611&rft.eissn=2192-662X&rft_id=info:doi/10.1007/s13735-020-00194-y&rft_dat=%3Cproquest_cross%3E2919935670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919935670&rft_id=info:pmid/&rfr_iscdi=true