Special issue on deep learning in image and video retrieval
An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Re...
Gespeichert in:
Veröffentlicht in: | International journal of multimedia information retrieval 2020-06, Vol.9 (2), p.61-62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 2 |
container_start_page | 61 |
container_title | International journal of multimedia information retrieval |
container_volume | 9 |
creator | Oerlemans, Ard Guo, Yanming Lew, Michael S. Chua, Tat-Seng |
description | An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance. |
doi_str_mv | 10.1007/s13735-020-00194-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919935670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919935670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9f180abc8b927e19cd4157b18ee90e5ed72387e63059224f0328a9bc4c76fe063</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSZs0eJLFf7DgQQVvIU2nS5ba1mR3Yb-90YrenMvM4b03jx8h5xwuOYC-SlxqWTIQwAC4KdjhiMwEN4IpJd6Of2_OT8kipQ3kqYTioGfk-nlEH1xHQ0o7pENPG8SRduhiH_o1DT0N726N1PUN3YcGBxpxGwPuXXdGTlrXJVz87Dl5vbt9WT6w1dP94_JmxbxUcstMyytwta9qIzRy45uCl7rmFaIBLLHRQlYalYTSCFG0IEXlTO0Lr1WLoOScXEy5Yxw-dpi2djPsYp9fWmG4MbJUGrJKTCofh5QitnaMuXo8WA72i5OdONnMyX5zsodskpMpZXG_xvgX_Y_rEwUgadI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919935670</pqid></control><display><type>article</type><title>Special issue on deep learning in image and video retrieval</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Oerlemans, Ard ; Guo, Yanming ; Lew, Michael S. ; Chua, Tat-Seng</creator><creatorcontrib>Oerlemans, Ard ; Guo, Yanming ; Lew, Michael S. ; Chua, Tat-Seng</creatorcontrib><description>An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.</description><identifier>ISSN: 2192-6611</identifier><identifier>EISSN: 2192-662X</identifier><identifier>DOI: 10.1007/s13735-020-00194-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Classification ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Deep learning ; Editorial ; Feature extraction ; Image Processing and Computer Vision ; Image retrieval ; Information Storage and Retrieval ; Information Systems Applications (incl.Internet) ; Machine learning ; Multimedia Information Systems ; Retrieval ; State-of-the-art reviews</subject><ispartof>International journal of multimedia information retrieval, 2020-06, Vol.9 (2), p.61-62</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9f180abc8b927e19cd4157b18ee90e5ed72387e63059224f0328a9bc4c76fe063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13735-020-00194-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919935670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Oerlemans, Ard</creatorcontrib><creatorcontrib>Guo, Yanming</creatorcontrib><creatorcontrib>Lew, Michael S.</creatorcontrib><creatorcontrib>Chua, Tat-Seng</creatorcontrib><title>Special issue on deep learning in image and video retrieval</title><title>International journal of multimedia information retrieval</title><addtitle>Int J Multimed Info Retr</addtitle><description>An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Deep learning</subject><subject>Editorial</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Retrieval</subject><subject>State-of-the-art reviews</subject><issn>2192-6611</issn><issn>2192-662X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSZs0eJLFf7DgQQVvIU2nS5ba1mR3Yb-90YrenMvM4b03jx8h5xwuOYC-SlxqWTIQwAC4KdjhiMwEN4IpJd6Of2_OT8kipQ3kqYTioGfk-nlEH1xHQ0o7pENPG8SRduhiH_o1DT0N726N1PUN3YcGBxpxGwPuXXdGTlrXJVz87Dl5vbt9WT6w1dP94_JmxbxUcstMyytwta9qIzRy45uCl7rmFaIBLLHRQlYalYTSCFG0IEXlTO0Lr1WLoOScXEy5Yxw-dpi2djPsYp9fWmG4MbJUGrJKTCofh5QitnaMuXo8WA72i5OdONnMyX5zsodskpMpZXG_xvgX_Y_rEwUgadI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Oerlemans, Ard</creator><creator>Guo, Yanming</creator><creator>Lew, Michael S.</creator><creator>Chua, Tat-Seng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>Special issue on deep learning in image and video retrieval</title><author>Oerlemans, Ard ; Guo, Yanming ; Lew, Michael S. ; Chua, Tat-Seng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9f180abc8b927e19cd4157b18ee90e5ed72387e63059224f0328a9bc4c76fe063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Deep learning</topic><topic>Editorial</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Retrieval</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oerlemans, Ard</creatorcontrib><creatorcontrib>Guo, Yanming</creatorcontrib><creatorcontrib>Lew, Michael S.</creatorcontrib><creatorcontrib>Chua, Tat-Seng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of multimedia information retrieval</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oerlemans, Ard</au><au>Guo, Yanming</au><au>Lew, Michael S.</au><au>Chua, Tat-Seng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Special issue on deep learning in image and video retrieval</atitle><jtitle>International journal of multimedia information retrieval</jtitle><stitle>Int J Multimed Info Retr</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>9</volume><issue>2</issue><spage>61</spage><epage>62</epage><pages>61-62</pages><issn>2192-6611</issn><eissn>2192-662X</eissn><abstract>An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s13735-020-00194-y</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6611 |
ispartof | International journal of multimedia information retrieval, 2020-06, Vol.9 (2), p.61-62 |
issn | 2192-6611 2192-662X |
language | eng |
recordid | cdi_proquest_journals_2919935670 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Classification Computer Science Data Mining and Knowledge Discovery Database Management Deep learning Editorial Feature extraction Image Processing and Computer Vision Image retrieval Information Storage and Retrieval Information Systems Applications (incl.Internet) Machine learning Multimedia Information Systems Retrieval State-of-the-art reviews |
title | Special issue on deep learning in image and video retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Special%20issue%20on%20deep%20learning%20in%20image%20and%20video%20retrieval&rft.jtitle=International%20journal%20of%20multimedia%20information%20retrieval&rft.au=Oerlemans,%20Ard&rft.date=2020-06-01&rft.volume=9&rft.issue=2&rft.spage=61&rft.epage=62&rft.pages=61-62&rft.issn=2192-6611&rft.eissn=2192-662X&rft_id=info:doi/10.1007/s13735-020-00194-y&rft_dat=%3Cproquest_cross%3E2919935670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919935670&rft_id=info:pmid/&rfr_iscdi=true |