Special issue on deep learning in image and video retrieval

An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multimedia information retrieval 2020-06, Vol.9 (2), p.61-62
Hauptverfasser: Oerlemans, Ard, Guo, Yanming, Lew, Michael S., Chua, Tat-Seng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An overview of the state of the art of deep learning applied to video understanding is given by the paper “A Study on Deep Learning Spatiotemporal Models and Feature Extraction Techniques for Video Understanding” by M. Suresha, S. Kuppa and D.S. Raghukumar. The paper “Learning Visual Features for Relational CBIR” by N. Messina, G. Amato, F. Carrara, F. Falchi and C. Gennaro defines Relational Content-Based Image Retrieval as the task of finding images containing similar inter-object relationships. Evaluation on the ImageNet dataset and four well-known CNNs showed that their system achieves state-of-the-art performance.
ISSN:2192-6611
2192-662X
DOI:10.1007/s13735-020-00194-y