Non-Hermitian noncommutative quantum mechanics
. In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilb...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2019-07, Vol.134 (7), p.332, Article 332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 332 |
container_title | European physical journal plus |
container_volume | 134 |
creator | dos Santos, J. F. G. Luiz, F. S. Duarte, O. S. Moussa, M. H. Y. |
description | .
In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects. |
doi_str_mv | 10.1140/epjp/i2019-12738-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919926197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919926197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouKz7Ap4KnrObSdKmOcqirrDoRc8hTafaYtNu0gq-vd2toCfnMnP4_n_gI-Qa2BpAsg32Tb-pOQNNgSuRU3FGFhw0o6mU8vzPfUlWMTZsGqlBarkg66fO0x2Gth5q6xPfede17TjYof7E5DBaP4xt0qJ7t7528YpcVPYj4upnL8nr_d3Ldkf3zw-P29s9dQL0QBEKlhZc51Vli0I5lK6oqoynQjBlXcEyrpRiJRcpilRzmWOe6RIyJZHLMhNLcjP39qE7jBgH03Rj8NNLwzVozTPQaqL4TLnQxRiwMn2oWxu-DDBzVGOOasxJjTmpMWIKiTkUJ9i_Yfit_if1DeJ1Z-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919926197</pqid></control><display><type>article</type><title>Non-Hermitian noncommutative quantum mechanics</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>dos Santos, J. F. G. ; Luiz, F. S. ; Duarte, O. S. ; Moussa, M. H. Y.</creator><creatorcontrib>dos Santos, J. F. G. ; Luiz, F. S. ; Duarte, O. S. ; Moussa, M. H. Y.</creatorcontrib><description>.
In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2019-12738-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvalues ; Expected values ; Formalism ; Hamiltonian functions ; Harmonic oscillators ; Hilbert space ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum physics ; Regular Article ; Theoretical</subject><ispartof>European physical journal plus, 2019-07, Vol.134 (7), p.332, Article 332</ispartof><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</citedby><cites>FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2019-12738-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919926197?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>dos Santos, J. F. G.</creatorcontrib><creatorcontrib>Luiz, F. S.</creatorcontrib><creatorcontrib>Duarte, O. S.</creatorcontrib><creatorcontrib>Moussa, M. H. Y.</creatorcontrib><title>Non-Hermitian noncommutative quantum mechanics</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>.
In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Expected values</subject><subject>Formalism</subject><subject>Hamiltonian functions</subject><subject>Harmonic oscillators</subject><subject>Hilbert space</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Regular Article</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFKxDAQhoMouKz7Ap4KnrObSdKmOcqirrDoRc8hTafaYtNu0gq-vd2toCfnMnP4_n_gI-Qa2BpAsg32Tb-pOQNNgSuRU3FGFhw0o6mU8vzPfUlWMTZsGqlBarkg66fO0x2Gth5q6xPfede17TjYof7E5DBaP4xt0qJ7t7528YpcVPYj4upnL8nr_d3Ldkf3zw-P29s9dQL0QBEKlhZc51Vli0I5lK6oqoynQjBlXcEyrpRiJRcpilRzmWOe6RIyJZHLMhNLcjP39qE7jBgH03Rj8NNLwzVozTPQaqL4TLnQxRiwMn2oWxu-DDBzVGOOasxJjTmpMWIKiTkUJ9i_Yfit_if1DeJ1Z-Q</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>dos Santos, J. F. G.</creator><creator>Luiz, F. S.</creator><creator>Duarte, O. S.</creator><creator>Moussa, M. H. Y.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190701</creationdate><title>Non-Hermitian noncommutative quantum mechanics</title><author>dos Santos, J. F. G. ; Luiz, F. S. ; Duarte, O. S. ; Moussa, M. H. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Expected values</topic><topic>Formalism</topic><topic>Hamiltonian functions</topic><topic>Harmonic oscillators</topic><topic>Hilbert space</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Regular Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, J. F. G.</creatorcontrib><creatorcontrib>Luiz, F. S.</creatorcontrib><creatorcontrib>Duarte, O. S.</creatorcontrib><creatorcontrib>Moussa, M. H. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, J. F. G.</au><au>Luiz, F. S.</au><au>Duarte, O. S.</au><au>Moussa, M. H. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Hermitian noncommutative quantum mechanics</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>134</volume><issue>7</issue><spage>332</spage><pages>332-</pages><artnum>332</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>.
In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2019-12738-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2019-07, Vol.134 (7), p.332, Article 332 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919926197 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Eigenvalues Expected values Formalism Hamiltonian functions Harmonic oscillators Hilbert space Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Quantum mechanics Quantum physics Regular Article Theoretical |
title | Non-Hermitian noncommutative quantum mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Hermitian%20noncommutative%20quantum%20mechanics&rft.jtitle=European%20physical%20journal%20plus&rft.au=dos%20Santos,%20J.%20F.%20G.&rft.date=2019-07-01&rft.volume=134&rft.issue=7&rft.spage=332&rft.pages=332-&rft.artnum=332&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2019-12738-3&rft_dat=%3Cproquest_cross%3E2919926197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919926197&rft_id=info:pmid/&rfr_iscdi=true |