Non-Hermitian noncommutative quantum mechanics

. In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2019-07, Vol.134 (7), p.332, Article 332
Hauptverfasser: dos Santos, J. F. G., Luiz, F. S., Duarte, O. S., Moussa, M. H. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 332
container_title European physical journal plus
container_volume 134
creator dos Santos, J. F. G.
Luiz, F. S.
Duarte, O. S.
Moussa, M. H. Y.
description . In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.
doi_str_mv 10.1140/epjp/i2019-12738-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919926197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919926197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouKz7Ap4KnrObSdKmOcqirrDoRc8hTafaYtNu0gq-vd2toCfnMnP4_n_gI-Qa2BpAsg32Tb-pOQNNgSuRU3FGFhw0o6mU8vzPfUlWMTZsGqlBarkg66fO0x2Gth5q6xPfede17TjYof7E5DBaP4xt0qJ7t7528YpcVPYj4upnL8nr_d3Ldkf3zw-P29s9dQL0QBEKlhZc51Vli0I5lK6oqoynQjBlXcEyrpRiJRcpilRzmWOe6RIyJZHLMhNLcjP39qE7jBgH03Rj8NNLwzVozTPQaqL4TLnQxRiwMn2oWxu-DDBzVGOOasxJjTmpMWIKiTkUJ9i_Yfit_if1DeJ1Z-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919926197</pqid></control><display><type>article</type><title>Non-Hermitian noncommutative quantum mechanics</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>dos Santos, J. F. G. ; Luiz, F. S. ; Duarte, O. S. ; Moussa, M. H. Y.</creator><creatorcontrib>dos Santos, J. F. G. ; Luiz, F. S. ; Duarte, O. S. ; Moussa, M. H. Y.</creatorcontrib><description>. In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2019-12738-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvalues ; Expected values ; Formalism ; Hamiltonian functions ; Harmonic oscillators ; Hilbert space ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum physics ; Regular Article ; Theoretical</subject><ispartof>European physical journal plus, 2019-07, Vol.134 (7), p.332, Article 332</ispartof><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</citedby><cites>FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2019-12738-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919926197?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>dos Santos, J. F. G.</creatorcontrib><creatorcontrib>Luiz, F. S.</creatorcontrib><creatorcontrib>Duarte, O. S.</creatorcontrib><creatorcontrib>Moussa, M. H. Y.</creatorcontrib><title>Non-Hermitian noncommutative quantum mechanics</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Expected values</subject><subject>Formalism</subject><subject>Hamiltonian functions</subject><subject>Harmonic oscillators</subject><subject>Hilbert space</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Regular Article</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFKxDAQhoMouKz7Ap4KnrObSdKmOcqirrDoRc8hTafaYtNu0gq-vd2toCfnMnP4_n_gI-Qa2BpAsg32Tb-pOQNNgSuRU3FGFhw0o6mU8vzPfUlWMTZsGqlBarkg66fO0x2Gth5q6xPfede17TjYof7E5DBaP4xt0qJ7t7528YpcVPYj4upnL8nr_d3Ldkf3zw-P29s9dQL0QBEKlhZc51Vli0I5lK6oqoynQjBlXcEyrpRiJRcpilRzmWOe6RIyJZHLMhNLcjP39qE7jBgH03Rj8NNLwzVozTPQaqL4TLnQxRiwMn2oWxu-DDBzVGOOasxJjTmpMWIKiTkUJ9i_Yfit_if1DeJ1Z-Q</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>dos Santos, J. F. G.</creator><creator>Luiz, F. S.</creator><creator>Duarte, O. S.</creator><creator>Moussa, M. H. Y.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190701</creationdate><title>Non-Hermitian noncommutative quantum mechanics</title><author>dos Santos, J. F. G. ; Luiz, F. S. ; Duarte, O. S. ; Moussa, M. H. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e1b05b298ffabb7ce4cbff6253307acb0627770d235e359248e869d1674e24d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Expected values</topic><topic>Formalism</topic><topic>Hamiltonian functions</topic><topic>Harmonic oscillators</topic><topic>Hilbert space</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Regular Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, J. F. G.</creatorcontrib><creatorcontrib>Luiz, F. S.</creatorcontrib><creatorcontrib>Duarte, O. S.</creatorcontrib><creatorcontrib>Moussa, M. H. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, J. F. G.</au><au>Luiz, F. S.</au><au>Duarte, O. S.</au><au>Moussa, M. H. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Hermitian noncommutative quantum mechanics</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>134</volume><issue>7</issue><spage>332</spage><pages>332-</pages><artnum>332</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2019-12738-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2019-07, Vol.134 (7), p.332, Article 332
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919926197
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Eigenvalues
Expected values
Formalism
Hamiltonian functions
Harmonic oscillators
Hilbert space
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum mechanics
Quantum physics
Regular Article
Theoretical
title Non-Hermitian noncommutative quantum mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Hermitian%20noncommutative%20quantum%20mechanics&rft.jtitle=European%20physical%20journal%20plus&rft.au=dos%20Santos,%20J.%20F.%20G.&rft.date=2019-07-01&rft.volume=134&rft.issue=7&rft.spage=332&rft.pages=332-&rft.artnum=332&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2019-12738-3&rft_dat=%3Cproquest_cross%3E2919926197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919926197&rft_id=info:pmid/&rfr_iscdi=true