Identification and prediction of attacks to industrial control systems using temporal point processes
The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked T...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2023-05, Vol.14 (5), p.4771-4783 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4783 |
---|---|
container_issue | 5 |
container_start_page | 4771 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 14 |
creator | Fortino, Giancarlo Greco, Claudia Guzzo, Antonella Ianni, Michele |
description | The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes (
MTTP
) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach. |
doi_str_mv | 10.1007/s12652-022-04416-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919926170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919926170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg0f4BTwHPq_nY7G6OUvwoFLzoOezmo6S2yZrJHvrvjV3RmwPDvGHeewMPoRtK7igh7T1Q1ghWEVa6rmlTiTO0oF3TVYLW4vwX8_YSLQF2pBSXnFK6QHZtbMjeed1nHwPug8Fjssbr0xod7nPu9QfgHLEPZoKcfL_HOoac4h7DEbI9AJ7Ahy0ucIypnMfoQy5GUVsAC9fowvV7sMufeYXenx7fVi_V5vV5vXrYVJq1najYQGXjmDTaSTLYpraWa8vqlpHWtI3tpSC0044IzQdqGTHGMCk7NwyGC-b4Fbqdfcvnz8lCVrs4pVBeKiaplKyhLSksNrN0igDJOjUmf-jTUVGivhNVc6KqJKpOiSpRRHwWQSGHrU1_1v-ovgAsensG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919926170</pqid></control><display><type>article</type><title>Identification and prediction of attacks to industrial control systems using temporal point processes</title><source>SpringerNature Complete Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Fortino, Giancarlo ; Greco, Claudia ; Guzzo, Antonella ; Ianni, Michele</creator><creatorcontrib>Fortino, Giancarlo ; Greco, Claudia ; Guzzo, Antonella ; Ianni, Michele</creatorcontrib><description>The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes (
MTTP
) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-022-04416-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aftershocks ; Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control systems ; Deep learning ; Earthquakes ; Engineering ; Gas pipelines ; Industrial electronics ; Learning theory ; Machine learning ; Natural gas ; Neural networks ; Original Research ; Robotics and Automation ; Software ; Surveillance ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2023-05, Vol.14 (5), p.4771-4783</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</citedby><cites>FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</cites><orcidid>0000-0003-0562-7462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-022-04416-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919926170?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Greco, Claudia</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><title>Identification and prediction of attacks to industrial control systems using temporal point processes</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes (
MTTP
) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach.</description><subject>Aftershocks</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>Earthquakes</subject><subject>Engineering</subject><subject>Gas pipelines</subject><subject>Industrial electronics</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Natural gas</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Robotics and Automation</subject><subject>Software</subject><subject>Surveillance</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJg0f4BTwHPq_nY7G6OUvwoFLzoOezmo6S2yZrJHvrvjV3RmwPDvGHeewMPoRtK7igh7T1Q1ghWEVa6rmlTiTO0oF3TVYLW4vwX8_YSLQF2pBSXnFK6QHZtbMjeed1nHwPug8Fjssbr0xod7nPu9QfgHLEPZoKcfL_HOoac4h7DEbI9AJ7Ahy0ucIypnMfoQy5GUVsAC9fowvV7sMufeYXenx7fVi_V5vV5vXrYVJq1najYQGXjmDTaSTLYpraWa8vqlpHWtI3tpSC0044IzQdqGTHGMCk7NwyGC-b4Fbqdfcvnz8lCVrs4pVBeKiaplKyhLSksNrN0igDJOjUmf-jTUVGivhNVc6KqJKpOiSpRRHwWQSGHrU1_1v-ovgAsensG</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fortino, Giancarlo</creator><creator>Greco, Claudia</creator><creator>Guzzo, Antonella</creator><creator>Ianni, Michele</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid></search><sort><creationdate>20230501</creationdate><title>Identification and prediction of attacks to industrial control systems using temporal point processes</title><author>Fortino, Giancarlo ; Greco, Claudia ; Guzzo, Antonella ; Ianni, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aftershocks</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>Earthquakes</topic><topic>Engineering</topic><topic>Gas pipelines</topic><topic>Industrial electronics</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Natural gas</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Robotics and Automation</topic><topic>Software</topic><topic>Surveillance</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Greco, Claudia</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fortino, Giancarlo</au><au>Greco, Claudia</au><au>Guzzo, Antonella</au><au>Ianni, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and prediction of attacks to industrial control systems using temporal point processes</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>4771</spage><epage>4783</epage><pages>4771-4783</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes (
MTTP
) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-022-04416-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2023-05, Vol.14 (5), p.4771-4783 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_2919926170 |
source | SpringerNature Complete Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Aftershocks Algorithms Artificial Intelligence Computational Intelligence Control systems Deep learning Earthquakes Engineering Gas pipelines Industrial electronics Learning theory Machine learning Natural gas Neural networks Original Research Robotics and Automation Software Surveillance User Interfaces and Human Computer Interaction |
title | Identification and prediction of attacks to industrial control systems using temporal point processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20prediction%20of%20attacks%20to%20industrial%20control%20systems%20using%20temporal%20point%20processes&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Fortino,%20Giancarlo&rft.date=2023-05-01&rft.volume=14&rft.issue=5&rft.spage=4771&rft.epage=4783&rft.pages=4771-4783&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-022-04416-5&rft_dat=%3Cproquest_cross%3E2919926170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919926170&rft_id=info:pmid/&rfr_iscdi=true |