Identification and prediction of attacks to industrial control systems using temporal point processes

The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2023-05, Vol.14 (5), p.4771-4783
Hauptverfasser: Fortino, Giancarlo, Greco, Claudia, Guzzo, Antonella, Ianni, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4783
container_issue 5
container_start_page 4771
container_title Journal of ambient intelligence and humanized computing
container_volume 14
creator Fortino, Giancarlo
Greco, Claudia
Guzzo, Antonella
Ianni, Michele
description The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes ( MTTP ) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach.
doi_str_mv 10.1007/s12652-022-04416-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919926170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919926170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg0f4BTwHPq_nY7G6OUvwoFLzoOezmo6S2yZrJHvrvjV3RmwPDvGHeewMPoRtK7igh7T1Q1ghWEVa6rmlTiTO0oF3TVYLW4vwX8_YSLQF2pBSXnFK6QHZtbMjeed1nHwPug8Fjssbr0xod7nPu9QfgHLEPZoKcfL_HOoac4h7DEbI9AJ7Ahy0ucIypnMfoQy5GUVsAC9fowvV7sMufeYXenx7fVi_V5vV5vXrYVJq1najYQGXjmDTaSTLYpraWa8vqlpHWtI3tpSC0044IzQdqGTHGMCk7NwyGC-b4Fbqdfcvnz8lCVrs4pVBeKiaplKyhLSksNrN0igDJOjUmf-jTUVGivhNVc6KqJKpOiSpRRHwWQSGHrU1_1v-ovgAsensG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919926170</pqid></control><display><type>article</type><title>Identification and prediction of attacks to industrial control systems using temporal point processes</title><source>SpringerNature Complete Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Fortino, Giancarlo ; Greco, Claudia ; Guzzo, Antonella ; Ianni, Michele</creator><creatorcontrib>Fortino, Giancarlo ; Greco, Claudia ; Guzzo, Antonella ; Ianni, Michele</creatorcontrib><description>The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes ( MTTP ) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-022-04416-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aftershocks ; Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control systems ; Deep learning ; Earthquakes ; Engineering ; Gas pipelines ; Industrial electronics ; Learning theory ; Machine learning ; Natural gas ; Neural networks ; Original Research ; Robotics and Automation ; Software ; Surveillance ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2023-05, Vol.14 (5), p.4771-4783</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</citedby><cites>FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</cites><orcidid>0000-0003-0562-7462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-022-04416-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919926170?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Greco, Claudia</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><title>Identification and prediction of attacks to industrial control systems using temporal point processes</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes ( MTTP ) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach.</description><subject>Aftershocks</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>Earthquakes</subject><subject>Engineering</subject><subject>Gas pipelines</subject><subject>Industrial electronics</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Natural gas</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Robotics and Automation</subject><subject>Software</subject><subject>Surveillance</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJg0f4BTwHPq_nY7G6OUvwoFLzoOezmo6S2yZrJHvrvjV3RmwPDvGHeewMPoRtK7igh7T1Q1ghWEVa6rmlTiTO0oF3TVYLW4vwX8_YSLQF2pBSXnFK6QHZtbMjeed1nHwPug8Fjssbr0xod7nPu9QfgHLEPZoKcfL_HOoac4h7DEbI9AJ7Ahy0ucIypnMfoQy5GUVsAC9fowvV7sMufeYXenx7fVi_V5vV5vXrYVJq1najYQGXjmDTaSTLYpraWa8vqlpHWtI3tpSC0044IzQdqGTHGMCk7NwyGC-b4Fbqdfcvnz8lCVrs4pVBeKiaplKyhLSksNrN0igDJOjUmf-jTUVGivhNVc6KqJKpOiSpRRHwWQSGHrU1_1v-ovgAsensG</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fortino, Giancarlo</creator><creator>Greco, Claudia</creator><creator>Guzzo, Antonella</creator><creator>Ianni, Michele</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid></search><sort><creationdate>20230501</creationdate><title>Identification and prediction of attacks to industrial control systems using temporal point processes</title><author>Fortino, Giancarlo ; Greco, Claudia ; Guzzo, Antonella ; Ianni, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2785-2b196f29dcf90be64ee3ce247207d76ea95018cf05c3b1e20ddd2998fbbd352f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aftershocks</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>Earthquakes</topic><topic>Engineering</topic><topic>Gas pipelines</topic><topic>Industrial electronics</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Natural gas</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Robotics and Automation</topic><topic>Software</topic><topic>Surveillance</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Greco, Claudia</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fortino, Giancarlo</au><au>Greco, Claudia</au><au>Guzzo, Antonella</au><au>Ianni, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and prediction of attacks to industrial control systems using temporal point processes</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>4771</spage><epage>4783</epage><pages>4771-4783</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>The task of identifying malicious activities in logs and predicting threats is crucial nowadays in industrial sector. In this paper, we focus on the identification of past malicious activities and in the prediction of future threats by proposing a novel technique based on the combination of Marked Temporal Point Processes ( MTTP ) and Neural Networks. Differently from the traditional formulation of Temporal Point Processes, our method does not make any prior assumptions on the functional form of the conditional intensity function and on the distribution of the events. Our approach is based the adoption of Neural Networks with the goal of improving the capabilities of learning arbitrary and unknown event distributions by taking advantage of the Deep Learning theory. We conduct a series of experiments using industrial data coming from gas pipelines, showing that our framework is able to represent in a convenient way the information gathered from the logs and predict future menaces in an unsupervised way, as well as classifying the past ones. The results of the experimental evaluation, showing outstanding values for precision and recall, confirm the effectiveness of our approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-022-04416-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2023-05, Vol.14 (5), p.4771-4783
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919926170
source SpringerNature Complete Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Aftershocks
Algorithms
Artificial Intelligence
Computational Intelligence
Control systems
Deep learning
Earthquakes
Engineering
Gas pipelines
Industrial electronics
Learning theory
Machine learning
Natural gas
Neural networks
Original Research
Robotics and Automation
Software
Surveillance
User Interfaces and Human Computer Interaction
title Identification and prediction of attacks to industrial control systems using temporal point processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20prediction%20of%20attacks%20to%20industrial%20control%20systems%20using%20temporal%20point%20processes&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Fortino,%20Giancarlo&rft.date=2023-05-01&rft.volume=14&rft.issue=5&rft.spage=4771&rft.epage=4783&rft.pages=4771-4783&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-022-04416-5&rft_dat=%3Cproquest_cross%3E2919926170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919926170&rft_id=info:pmid/&rfr_iscdi=true