Rule-Guided Joint Embedding Learning over Knowledge Graphs
Recent studies focus on embedding learning over knowledge graphs, which map entities and relations in knowledge graphs into low-dimensional vector spaces. While existing models mainly consider the aspect of graph structure, there exists a wealth of contextual and literal information that can be util...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Qisong Lin, Ji Wei, Sijia Liu, Neng |
description | Recent studies focus on embedding learning over knowledge graphs, which map entities and relations in knowledge graphs into low-dimensional vector spaces. While existing models mainly consider the aspect of graph structure, there exists a wealth of contextual and literal information that can be utilized for more effective embedding learning. This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings by utilizing graph convolutional networks. Specifically, for contextual information, we assess its significance through confidence and relatedness metrics. In addition, a unique rule-based method is developed to calculate the confidence metric, and the relatedness metric is derived from the literal information's representations. We validate our model performance with thorough experiments on two established benchmark datasets. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2919920504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919920504</sourcerecordid><originalsourceid>FETCH-proquest_journals_29199205043</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCirNSdV1L81MSU1R8MrPzCtRcM1NSk1JycxLV_BJTSzKAzHyy1KLFLzz8stzUlPSUxXcixILMop5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNLQ0tLIwNTAxJg4VQCCQzZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919920504</pqid></control><display><type>article</type><title>Rule-Guided Joint Embedding Learning over Knowledge Graphs</title><source>Free E- Journals</source><creator>Li, Qisong ; Lin, Ji ; Wei, Sijia ; Liu, Neng</creator><creatorcontrib>Li, Qisong ; Lin, Ji ; Wei, Sijia ; Liu, Neng</creatorcontrib><description>Recent studies focus on embedding learning over knowledge graphs, which map entities and relations in knowledge graphs into low-dimensional vector spaces. While existing models mainly consider the aspect of graph structure, there exists a wealth of contextual and literal information that can be utilized for more effective embedding learning. This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings by utilizing graph convolutional networks. Specifically, for contextual information, we assess its significance through confidence and relatedness metrics. In addition, a unique rule-based method is developed to calculate the confidence metric, and the relatedness metric is derived from the literal information's representations. We validate our model performance with thorough experiments on two established benchmark datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Embedding ; Graphs ; Knowledge representation ; Learning ; Vector spaces</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Li, Qisong</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Wei, Sijia</creatorcontrib><creatorcontrib>Liu, Neng</creatorcontrib><title>Rule-Guided Joint Embedding Learning over Knowledge Graphs</title><title>arXiv.org</title><description>Recent studies focus on embedding learning over knowledge graphs, which map entities and relations in knowledge graphs into low-dimensional vector spaces. While existing models mainly consider the aspect of graph structure, there exists a wealth of contextual and literal information that can be utilized for more effective embedding learning. This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings by utilizing graph convolutional networks. Specifically, for contextual information, we assess its significance through confidence and relatedness metrics. In addition, a unique rule-based method is developed to calculate the confidence metric, and the relatedness metric is derived from the literal information's representations. We validate our model performance with thorough experiments on two established benchmark datasets.</description><subject>Artificial neural networks</subject><subject>Embedding</subject><subject>Graphs</subject><subject>Knowledge representation</subject><subject>Learning</subject><subject>Vector spaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCirNSdV1L81MSU1R8MrPzCtRcM1NSk1JycxLV_BJTSzKAzHyy1KLFLzz8stzUlPSUxXcixILMop5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNLQ0tLIwNTAxJg4VQCCQzZc</recordid><startdate>20240127</startdate><enddate>20240127</enddate><creator>Li, Qisong</creator><creator>Lin, Ji</creator><creator>Wei, Sijia</creator><creator>Liu, Neng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240127</creationdate><title>Rule-Guided Joint Embedding Learning over Knowledge Graphs</title><author>Li, Qisong ; Lin, Ji ; Wei, Sijia ; Liu, Neng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29199205043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Embedding</topic><topic>Graphs</topic><topic>Knowledge representation</topic><topic>Learning</topic><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Qisong</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Wei, Sijia</creatorcontrib><creatorcontrib>Liu, Neng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qisong</au><au>Lin, Ji</au><au>Wei, Sijia</au><au>Liu, Neng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rule-Guided Joint Embedding Learning over Knowledge Graphs</atitle><jtitle>arXiv.org</jtitle><date>2024-01-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent studies focus on embedding learning over knowledge graphs, which map entities and relations in knowledge graphs into low-dimensional vector spaces. While existing models mainly consider the aspect of graph structure, there exists a wealth of contextual and literal information that can be utilized for more effective embedding learning. This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings by utilizing graph convolutional networks. Specifically, for contextual information, we assess its significance through confidence and relatedness metrics. In addition, a unique rule-based method is developed to calculate the confidence metric, and the relatedness metric is derived from the literal information's representations. We validate our model performance with thorough experiments on two established benchmark datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2919920504 |
source | Free E- Journals |
subjects | Artificial neural networks Embedding Graphs Knowledge representation Learning Vector spaces |
title | Rule-Guided Joint Embedding Learning over Knowledge Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rule-Guided%20Joint%20Embedding%20Learning%20over%20Knowledge%20Graphs&rft.jtitle=arXiv.org&rft.au=Li,%20Qisong&rft.date=2024-01-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2919920504%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919920504&rft_id=info:pmid/&rfr_iscdi=true |