Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data
We used satellite altimetry data to investigate the Kuroshio Current because of the higher resolution and wider range of observations. In previous studies, satellite absolute geostrophic velocities were used to study the spatio-temporal variability of the sea surface velocity field along the current...
Gespeichert in:
Veröffentlicht in: | Acta oceanologica Sinica 2020, Vol.39 (1), p.14-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | Acta oceanologica Sinica |
container_volume | 39 |
creator | Zhuang, Zhanpeng Hui, Zhenli Yang, Guangbing Zhao, Xinhua Yuan, Yeli |
description | We used satellite altimetry data to investigate the Kuroshio Current because of the higher resolution and wider range of observations. In previous studies, satellite absolute geostrophic velocities were used to study the spatio-temporal variability of the sea surface velocity field along the current, and extraction methods were employed to detect the Kuroshio axes and paths. However, sea surface absolute geostrophic velocity estimated from absolute dynamic topography should be regarded as the geostrophic component of the actual surface velocity, which cannot represent a sea surface current accurately. In this study, mathematical verification between the climatic absolute geostrophic and bin-averaged drifting buoy velocity was established and then adopted to correct the satellite absolute geostrophic velocities. There were some differences in the characteristics between satellite geostrophic and drifting buoy velocities. As a result, the corrected satellite absolute geostrophic velocities were used to detect the Kuroshio axis and path based on a principal-component detection scheme. The results showed that the detection of the Kuroshio axes and paths from corrected absolute geostrophic velocities performed better than those from satellite absolute geostrophic velocities and surface current estimations. The corrected satellite absolute geostrophic velocity may therefore contribute to more precise day-to-day detection of the Kuroshio Current axis and path. |
doi_str_mv | 10.1007/s13131-019-1523-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919917338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344554678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-21b6d159b1b3ce71e18200f01f5370ea27505a14d1535c5e24e652d6b17c5123</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhi1UJLYLD8DNEucUjx0nmyNalYKK1B720JvlJJNdo2CntkPLw_CuTNhKPbWyZI_lb_7xzM_YJYhPIER9nUDRKgQ0BWipCnnCVrCp6Caa5gNbCalVoYX-ccY-pvQohAat6hV7_R6d79xkx6ILT1Pw6DPHlN2TzZh4GHg-IP86x5AOLvDtHONC2N8ucet7Ptl84K1N2PPg31lKPCBtrrMjf8boBoqyo9cW8y9EzxNJj6PLyO1IhTBjfNfqic3O73k7hxfe22zP2elgx4QXf841291-3m3viodvX-63Nw9Fp8oyFxLaqgfdtNCqDmtA2EghBgED9SjQypo6t1ASo3SnUZZYadlXLdSdBqnW7OooO8Xwc6buzWOYo6eKRjbQNFArtfkvRd_QuqzqhYIj1dHIUsTBTJGGGV8MCLNYZY5WGbLKLFaZpb485iRi_R7jX-V_J70BtJKYVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919917338</pqid></control><display><type>article</type><title>Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhuang, Zhanpeng ; Hui, Zhenli ; Yang, Guangbing ; Zhao, Xinhua ; Yuan, Yeli</creator><creatorcontrib>Zhuang, Zhanpeng ; Hui, Zhenli ; Yang, Guangbing ; Zhao, Xinhua ; Yuan, Yeli</creatorcontrib><description>We used satellite altimetry data to investigate the Kuroshio Current because of the higher resolution and wider range of observations. In previous studies, satellite absolute geostrophic velocities were used to study the spatio-temporal variability of the sea surface velocity field along the current, and extraction methods were employed to detect the Kuroshio axes and paths. However, sea surface absolute geostrophic velocity estimated from absolute dynamic topography should be regarded as the geostrophic component of the actual surface velocity, which cannot represent a sea surface current accurately. In this study, mathematical verification between the climatic absolute geostrophic and bin-averaged drifting buoy velocity was established and then adopted to correct the satellite absolute geostrophic velocities. There were some differences in the characteristics between satellite geostrophic and drifting buoy velocities. As a result, the corrected satellite absolute geostrophic velocities were used to detect the Kuroshio axis and path based on a principal-component detection scheme. The results showed that the detection of the Kuroshio axes and paths from corrected absolute geostrophic velocities performed better than those from satellite absolute geostrophic velocities and surface current estimations. The corrected satellite absolute geostrophic velocity may therefore contribute to more precise day-to-day detection of the Kuroshio Current axis and path.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-019-1523-2</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Oceanography</publisher><subject>Altimeters ; Altimetry ; Axes (reference lines) ; Buoy data ; Buoys ; Climatology ; Detection ; Drift ; Drifting buoys ; Dynamic topography ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Kuroshio Current ; Marine & Freshwater Sciences ; Mathematical analysis ; Oceanography ; Satellite altimetry ; Satellite observation ; Satellites ; Sea surface ; Surface velocity ; Temporal variability ; Temporal variations ; Velocity ; Velocity distribution ; Verification</subject><ispartof>Acta oceanologica Sinica, 2020, Vol.39 (1), p.14-24</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>2020© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-21b6d159b1b3ce71e18200f01f5370ea27505a14d1535c5e24e652d6b17c5123</citedby><cites>FETCH-LOGICAL-c344t-21b6d159b1b3ce71e18200f01f5370ea27505a14d1535c5e24e652d6b17c5123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-019-1523-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919917338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhuang, Zhanpeng</creatorcontrib><creatorcontrib>Hui, Zhenli</creatorcontrib><creatorcontrib>Yang, Guangbing</creatorcontrib><creatorcontrib>Zhao, Xinhua</creatorcontrib><creatorcontrib>Yuan, Yeli</creatorcontrib><title>Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>We used satellite altimetry data to investigate the Kuroshio Current because of the higher resolution and wider range of observations. In previous studies, satellite absolute geostrophic velocities were used to study the spatio-temporal variability of the sea surface velocity field along the current, and extraction methods were employed to detect the Kuroshio axes and paths. However, sea surface absolute geostrophic velocity estimated from absolute dynamic topography should be regarded as the geostrophic component of the actual surface velocity, which cannot represent a sea surface current accurately. In this study, mathematical verification between the climatic absolute geostrophic and bin-averaged drifting buoy velocity was established and then adopted to correct the satellite absolute geostrophic velocities. There were some differences in the characteristics between satellite geostrophic and drifting buoy velocities. As a result, the corrected satellite absolute geostrophic velocities were used to detect the Kuroshio axis and path based on a principal-component detection scheme. The results showed that the detection of the Kuroshio axes and paths from corrected absolute geostrophic velocities performed better than those from satellite absolute geostrophic velocities and surface current estimations. The corrected satellite absolute geostrophic velocity may therefore contribute to more precise day-to-day detection of the Kuroshio Current axis and path.</description><subject>Altimeters</subject><subject>Altimetry</subject><subject>Axes (reference lines)</subject><subject>Buoy data</subject><subject>Buoys</subject><subject>Climatology</subject><subject>Detection</subject><subject>Drift</subject><subject>Drifting buoys</subject><subject>Dynamic topography</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Kuroshio Current</subject><subject>Marine & Freshwater Sciences</subject><subject>Mathematical analysis</subject><subject>Oceanography</subject><subject>Satellite altimetry</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Surface velocity</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Verification</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFO3DAQhi1UJLYLD8DNEucUjx0nmyNalYKK1B720JvlJJNdo2CntkPLw_CuTNhKPbWyZI_lb_7xzM_YJYhPIER9nUDRKgQ0BWipCnnCVrCp6Caa5gNbCalVoYX-ccY-pvQohAat6hV7_R6d79xkx6ILT1Pw6DPHlN2TzZh4GHg-IP86x5AOLvDtHONC2N8ucet7Ptl84K1N2PPg31lKPCBtrrMjf8boBoqyo9cW8y9EzxNJj6PLyO1IhTBjfNfqic3O73k7hxfe22zP2elgx4QXf841291-3m3viodvX-63Nw9Fp8oyFxLaqgfdtNCqDmtA2EghBgED9SjQypo6t1ASo3SnUZZYadlXLdSdBqnW7OooO8Xwc6buzWOYo6eKRjbQNFArtfkvRd_QuqzqhYIj1dHIUsTBTJGGGV8MCLNYZY5WGbLKLFaZpb485iRi_R7jX-V_J70BtJKYVA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhuang, Zhanpeng</creator><creator>Hui, Zhenli</creator><creator>Yang, Guangbing</creator><creator>Zhao, Xinhua</creator><creator>Yuan, Yeli</creator><general>The Chinese Society of Oceanography</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>2020</creationdate><title>Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data</title><author>Zhuang, Zhanpeng ; Hui, Zhenli ; Yang, Guangbing ; Zhao, Xinhua ; Yuan, Yeli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-21b6d159b1b3ce71e18200f01f5370ea27505a14d1535c5e24e652d6b17c5123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altimeters</topic><topic>Altimetry</topic><topic>Axes (reference lines)</topic><topic>Buoy data</topic><topic>Buoys</topic><topic>Climatology</topic><topic>Detection</topic><topic>Drift</topic><topic>Drifting buoys</topic><topic>Dynamic topography</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Kuroshio Current</topic><topic>Marine & Freshwater Sciences</topic><topic>Mathematical analysis</topic><topic>Oceanography</topic><topic>Satellite altimetry</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Surface velocity</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Zhanpeng</creatorcontrib><creatorcontrib>Hui, Zhenli</creatorcontrib><creatorcontrib>Yang, Guangbing</creatorcontrib><creatorcontrib>Zhao, Xinhua</creatorcontrib><creatorcontrib>Yuan, Yeli</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Zhanpeng</au><au>Hui, Zhenli</au><au>Yang, Guangbing</au><au>Zhao, Xinhua</au><au>Yuan, Yeli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2020</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>14</spage><epage>24</epage><pages>14-24</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>We used satellite altimetry data to investigate the Kuroshio Current because of the higher resolution and wider range of observations. In previous studies, satellite absolute geostrophic velocities were used to study the spatio-temporal variability of the sea surface velocity field along the current, and extraction methods were employed to detect the Kuroshio axes and paths. However, sea surface absolute geostrophic velocity estimated from absolute dynamic topography should be regarded as the geostrophic component of the actual surface velocity, which cannot represent a sea surface current accurately. In this study, mathematical verification between the climatic absolute geostrophic and bin-averaged drifting buoy velocity was established and then adopted to correct the satellite absolute geostrophic velocities. There were some differences in the characteristics between satellite geostrophic and drifting buoy velocities. As a result, the corrected satellite absolute geostrophic velocities were used to detect the Kuroshio axis and path based on a principal-component detection scheme. The results showed that the detection of the Kuroshio axes and paths from corrected absolute geostrophic velocities performed better than those from satellite absolute geostrophic velocities and surface current estimations. The corrected satellite absolute geostrophic velocity may therefore contribute to more precise day-to-day detection of the Kuroshio Current axis and path.</abstract><cop>Beijing</cop><pub>The Chinese Society of Oceanography</pub><doi>10.1007/s13131-019-1523-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-505X |
ispartof | Acta oceanologica Sinica, 2020, Vol.39 (1), p.14-24 |
issn | 0253-505X 1869-1099 |
language | eng |
recordid | cdi_proquest_journals_2919917338 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Altimeters Altimetry Axes (reference lines) Buoy data Buoys Climatology Detection Drift Drifting buoys Dynamic topography Earth and Environmental Science Earth Sciences Ecology Engineering Fluid Dynamics Environmental Chemistry Kuroshio Current Marine & Freshwater Sciences Mathematical analysis Oceanography Satellite altimetry Satellite observation Satellites Sea surface Surface velocity Temporal variability Temporal variations Velocity Velocity distribution Verification |
title | Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal-component%20estimates%20of%20the%20Kuroshio%20Current%20axis%20and%20path%20based%20on%20the%20mathematical%20verification%20between%20satellite%20altimeter%20and%20drifting%20buoy%20data&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Zhuang,%20Zhanpeng&rft.date=2020&rft.volume=39&rft.issue=1&rft.spage=14&rft.epage=24&rft.pages=14-24&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-019-1523-2&rft_dat=%3Cproquest_cross%3E2344554678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919917338&rft_id=info:pmid/&rfr_iscdi=true |