Capillary waves and dendritic instability on radial Hele–Shaw displacements

The displacement of a fluid by another less viscous one in isotropic quasi-two-dimensional Hele–Shaw cells typically leads to viscous fingering patterns characterized by repeated tip-splitting and side-branching. When anisotropy is present, the viscous fingering patterns are replaced by dendritic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-01, Vol.36 (1)
Hauptverfasser: Abedi, Behbood, Oliveira, Rafael M., Berghe, Lara S., de Souza Mendes, Paulo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Abedi, Behbood
Oliveira, Rafael M.
Berghe, Lara S.
de Souza Mendes, Paulo R.
description The displacement of a fluid by another less viscous one in isotropic quasi-two-dimensional Hele–Shaw cells typically leads to viscous fingering patterns characterized by repeated tip-splitting and side-branching. When anisotropy is present, the viscous fingering patterns are replaced by dendritic instability. In isotropic cells, Couder et al. [“Dendritic growth in the Saffman-Taylor experiment,” Europhys. Lett. 2, 437 (1986)] induced the growth of a dendritic finger by placing a small isolated bubble in contact with the tip of a finger. Moreover, in rectangular displacements, Kopf-Sill and Homsy [“Narrow fingers in a Hele–Shaw cell,” Phys. Fluids 30, 2607–2609 (1987)] observed for specific ranges of modified capillary numbers, Ca, that narrow fingers develop into dendritic patterns after carefully cleaning the Hele–Shaw cell with a soap solution. In the current work, by injecting air to radially displace a lubricant oil with strong adsorption properties, we observe for the first time the growth of dendritic instability in displacements confined in isotropic Hele–Shaw cells in the absence of air bubbles driving the fingertip. These structures are driven by the formation of capillary waves inside the finger adjacent to the Hele–Shaw surfaces. Furthermore, we compare displacements of different materials at similar high Ca values and obtain significantly different morphological results, indicating the pattern formation may not scale with this parameter in this range. Discrepancies are explained based on both wetting and inertia effects.
doi_str_mv 10.1063/5.0188493
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2919906015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919906015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-491771bbc85c67cf127b2b7347345e5fde8dc9d84795e587edb7e5bdd4575f733</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgSmFqMpn8LaWoFSou1HXIJBlMmWbGJLV05zv4hj6JU6Zr4cK9Bz7u4RwALjGaYcTILZ0hLEQlyRGYYCRkwRljx_ubo4Ixgk_BWUorhBCRJZuA57nufdvquINb_eUS1MFC64KNPnsDfUhZ1771eQe7AKO2Xrdw4Vr3-_3z-qG30PrUt9q4tQs5nYOTRrfJXRz2FLw_3L_NF8Xy5fFpfrcsTCl4LiqJOcd1bQQ1jJsGl7wua06qYaijjXXCGmlFxeUgBXe25o7W1laU04YTMgVX498-dp8bl7JadZsYBktVSiwlYgjTgboeKRO7lKJrVB_9eoiqMFL7thRVh7YG9mZkk_FZZ9-Ff-A_QC9qfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919906015</pqid></control><display><type>article</type><title>Capillary waves and dendritic instability on radial Hele–Shaw displacements</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Abedi, Behbood ; Oliveira, Rafael M. ; Berghe, Lara S. ; de Souza Mendes, Paulo R.</creator><creatorcontrib>Abedi, Behbood ; Oliveira, Rafael M. ; Berghe, Lara S. ; de Souza Mendes, Paulo R.</creatorcontrib><description>The displacement of a fluid by another less viscous one in isotropic quasi-two-dimensional Hele–Shaw cells typically leads to viscous fingering patterns characterized by repeated tip-splitting and side-branching. When anisotropy is present, the viscous fingering patterns are replaced by dendritic instability. In isotropic cells, Couder et al. [“Dendritic growth in the Saffman-Taylor experiment,” Europhys. Lett. 2, 437 (1986)] induced the growth of a dendritic finger by placing a small isolated bubble in contact with the tip of a finger. Moreover, in rectangular displacements, Kopf-Sill and Homsy [“Narrow fingers in a Hele–Shaw cell,” Phys. Fluids 30, 2607–2609 (1987)] observed for specific ranges of modified capillary numbers, Ca, that narrow fingers develop into dendritic patterns after carefully cleaning the Hele–Shaw cell with a soap solution. In the current work, by injecting air to radially displace a lubricant oil with strong adsorption properties, we observe for the first time the growth of dendritic instability in displacements confined in isotropic Hele–Shaw cells in the absence of air bubbles driving the fingertip. These structures are driven by the formation of capillary waves inside the finger adjacent to the Hele–Shaw surfaces. Furthermore, we compare displacements of different materials at similar high Ca values and obtain significantly different morphological results, indicating the pattern formation may not scale with this parameter in this range. Discrepancies are explained based on both wetting and inertia effects.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0188493</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air bubbles ; Anisotropy ; Capillary waves ; Dendritic structure ; Lubricants ; Stability</subject><ispartof>Physics of fluids (1994), 2024-01, Vol.36 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-491771bbc85c67cf127b2b7347345e5fde8dc9d84795e587edb7e5bdd4575f733</cites><orcidid>0000-0002-7813-3028 ; 0000-0003-1192-1756 ; 0000-0002-4280-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Abedi, Behbood</creatorcontrib><creatorcontrib>Oliveira, Rafael M.</creatorcontrib><creatorcontrib>Berghe, Lara S.</creatorcontrib><creatorcontrib>de Souza Mendes, Paulo R.</creatorcontrib><title>Capillary waves and dendritic instability on radial Hele–Shaw displacements</title><title>Physics of fluids (1994)</title><description>The displacement of a fluid by another less viscous one in isotropic quasi-two-dimensional Hele–Shaw cells typically leads to viscous fingering patterns characterized by repeated tip-splitting and side-branching. When anisotropy is present, the viscous fingering patterns are replaced by dendritic instability. In isotropic cells, Couder et al. [“Dendritic growth in the Saffman-Taylor experiment,” Europhys. Lett. 2, 437 (1986)] induced the growth of a dendritic finger by placing a small isolated bubble in contact with the tip of a finger. Moreover, in rectangular displacements, Kopf-Sill and Homsy [“Narrow fingers in a Hele–Shaw cell,” Phys. Fluids 30, 2607–2609 (1987)] observed for specific ranges of modified capillary numbers, Ca, that narrow fingers develop into dendritic patterns after carefully cleaning the Hele–Shaw cell with a soap solution. In the current work, by injecting air to radially displace a lubricant oil with strong adsorption properties, we observe for the first time the growth of dendritic instability in displacements confined in isotropic Hele–Shaw cells in the absence of air bubbles driving the fingertip. These structures are driven by the formation of capillary waves inside the finger adjacent to the Hele–Shaw surfaces. Furthermore, we compare displacements of different materials at similar high Ca values and obtain significantly different morphological results, indicating the pattern formation may not scale with this parameter in this range. Discrepancies are explained based on both wetting and inertia effects.</description><subject>Air bubbles</subject><subject>Anisotropy</subject><subject>Capillary waves</subject><subject>Dendritic structure</subject><subject>Lubricants</subject><subject>Stability</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgSmFqMpn8LaWoFSou1HXIJBlMmWbGJLV05zv4hj6JU6Zr4cK9Bz7u4RwALjGaYcTILZ0hLEQlyRGYYCRkwRljx_ubo4Ixgk_BWUorhBCRJZuA57nufdvquINb_eUS1MFC64KNPnsDfUhZ1771eQe7AKO2Xrdw4Vr3-_3z-qG30PrUt9q4tQs5nYOTRrfJXRz2FLw_3L_NF8Xy5fFpfrcsTCl4LiqJOcd1bQQ1jJsGl7wua06qYaijjXXCGmlFxeUgBXe25o7W1laU04YTMgVX498-dp8bl7JadZsYBktVSiwlYgjTgboeKRO7lKJrVB_9eoiqMFL7thRVh7YG9mZkk_FZZ9-Ff-A_QC9qfw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Abedi, Behbood</creator><creator>Oliveira, Rafael M.</creator><creator>Berghe, Lara S.</creator><creator>de Souza Mendes, Paulo R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7813-3028</orcidid><orcidid>https://orcid.org/0000-0003-1192-1756</orcidid><orcidid>https://orcid.org/0000-0002-4280-5259</orcidid></search><sort><creationdate>202401</creationdate><title>Capillary waves and dendritic instability on radial Hele–Shaw displacements</title><author>Abedi, Behbood ; Oliveira, Rafael M. ; Berghe, Lara S. ; de Souza Mendes, Paulo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-491771bbc85c67cf127b2b7347345e5fde8dc9d84795e587edb7e5bdd4575f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air bubbles</topic><topic>Anisotropy</topic><topic>Capillary waves</topic><topic>Dendritic structure</topic><topic>Lubricants</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abedi, Behbood</creatorcontrib><creatorcontrib>Oliveira, Rafael M.</creatorcontrib><creatorcontrib>Berghe, Lara S.</creatorcontrib><creatorcontrib>de Souza Mendes, Paulo R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abedi, Behbood</au><au>Oliveira, Rafael M.</au><au>Berghe, Lara S.</au><au>de Souza Mendes, Paulo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary waves and dendritic instability on radial Hele–Shaw displacements</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The displacement of a fluid by another less viscous one in isotropic quasi-two-dimensional Hele–Shaw cells typically leads to viscous fingering patterns characterized by repeated tip-splitting and side-branching. When anisotropy is present, the viscous fingering patterns are replaced by dendritic instability. In isotropic cells, Couder et al. [“Dendritic growth in the Saffman-Taylor experiment,” Europhys. Lett. 2, 437 (1986)] induced the growth of a dendritic finger by placing a small isolated bubble in contact with the tip of a finger. Moreover, in rectangular displacements, Kopf-Sill and Homsy [“Narrow fingers in a Hele–Shaw cell,” Phys. Fluids 30, 2607–2609 (1987)] observed for specific ranges of modified capillary numbers, Ca, that narrow fingers develop into dendritic patterns after carefully cleaning the Hele–Shaw cell with a soap solution. In the current work, by injecting air to radially displace a lubricant oil with strong adsorption properties, we observe for the first time the growth of dendritic instability in displacements confined in isotropic Hele–Shaw cells in the absence of air bubbles driving the fingertip. These structures are driven by the formation of capillary waves inside the finger adjacent to the Hele–Shaw surfaces. Furthermore, we compare displacements of different materials at similar high Ca values and obtain significantly different morphological results, indicating the pattern formation may not scale with this parameter in this range. Discrepancies are explained based on both wetting and inertia effects.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0188493</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7813-3028</orcidid><orcidid>https://orcid.org/0000-0003-1192-1756</orcidid><orcidid>https://orcid.org/0000-0002-4280-5259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-01, Vol.36 (1)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2919906015
source AIP Journals Complete; Alma/SFX Local Collection
subjects Air bubbles
Anisotropy
Capillary waves
Dendritic structure
Lubricants
Stability
title Capillary waves and dendritic instability on radial Hele–Shaw displacements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20waves%20and%20dendritic%20instability%20on%20radial%20Hele%E2%80%93Shaw%20displacements&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Abedi,%20Behbood&rft.date=2024-01&rft.volume=36&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0188493&rft_dat=%3Cproquest_scita%3E2919906015%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919906015&rft_id=info:pmid/&rfr_iscdi=true