New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
. Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operat...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2017-01, Vol.132 (1), p.13, Article 13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | European physical journal plus |
container_volume | 132 |
creator | Gómez-Aguilar, J. F. Atangana, Abdon |
description | .
Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator power-law-exponential-Mittag-Leffler kernel with three fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed. The results show that the new fractional operators are powerful mathematical tools to model complex problems. |
doi_str_mv | 10.1140/epjp/i2017-11293-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919897780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919897780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d7fd5e18c7ce6073dedbfcf96ddfdaed73555235e40c6bb1aad2b284098663773</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EElXpH-AUiSuhfiWOuaGKl1TgAmfLsdfFVUiMnar035OmSHBiL7safTPSDkLnBF8RwvEcwjrMPcVE5IRQyXJ2hCaUSJwXnPPjP_cpmqW0xsNwSbjkE9Q8wzbzbfKr937YmYva9L5rdZNZ7xxEaHuv98p1FrotxMsMvkLXjvLAgNG7TLc2e_J9r1f5EpxrIGaN3qZR1yE03owJ6QydON0kmP3sKXq7u31dPOTLl_vHxc0yN4zIPrfC2QJIZYSBEgtmwdbOOFla66wGK1hRFJQVwLEp65pobWlNK45lVZZMCDZFF4fcELvPDaRerbtNHH5KikoiKylEhQeKHigTu5QiOBWi_9BxpwhW-2LVvlg1FqvGYhUbTOxgSgPcriD-Rv_j-gYuAn-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919897780</pqid></control><display><type>article</type><title>New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Gómez-Aguilar, J. F. ; Atangana, Abdon</creator><creatorcontrib>Gómez-Aguilar, J. F. ; Atangana, Abdon</creatorcontrib><description>.
Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator power-law-exponential-Mittag-Leffler kernel with three fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed. The results show that the new fractional operators are powerful mathematical tools to model complex problems.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2017-11293-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Calculus ; Complex Systems ; Condensed Matter Physics ; Decay ; Mathematical and Computational Physics ; Mathematical functions ; Molecular ; Operators (mathematics) ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Power ; Power law ; Regular Article ; Theoretical</subject><ispartof>European physical journal plus, 2017-01, Vol.132 (1), p.13, Article 13</ispartof><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d7fd5e18c7ce6073dedbfcf96ddfdaed73555235e40c6bb1aad2b284098663773</citedby><cites>FETCH-LOGICAL-c319t-d7fd5e18c7ce6073dedbfcf96ddfdaed73555235e40c6bb1aad2b284098663773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2017-11293-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919897780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><creatorcontrib>Atangana, Abdon</creatorcontrib><title>New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>.
Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator power-law-exponential-Mittag-Leffler kernel with three fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed. The results show that the new fractional operators are powerful mathematical tools to model complex problems.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Calculus</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Decay</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Molecular</subject><subject>Operators (mathematics)</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power</subject><subject>Power law</subject><subject>Regular Article</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPwzAQhC0EElXpH-AUiSuhfiWOuaGKl1TgAmfLsdfFVUiMnar035OmSHBiL7safTPSDkLnBF8RwvEcwjrMPcVE5IRQyXJ2hCaUSJwXnPPjP_cpmqW0xsNwSbjkE9Q8wzbzbfKr937YmYva9L5rdZNZ7xxEaHuv98p1FrotxMsMvkLXjvLAgNG7TLc2e_J9r1f5EpxrIGaN3qZR1yE03owJ6QydON0kmP3sKXq7u31dPOTLl_vHxc0yN4zIPrfC2QJIZYSBEgtmwdbOOFla66wGK1hRFJQVwLEp65pobWlNK45lVZZMCDZFF4fcELvPDaRerbtNHH5KikoiKylEhQeKHigTu5QiOBWi_9BxpwhW-2LVvlg1FqvGYhUbTOxgSgPcriD-Rv_j-gYuAn-8</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Gómez-Aguilar, J. F.</creator><creator>Atangana, Abdon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170101</creationdate><title>New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications</title><author>Gómez-Aguilar, J. F. ; Atangana, Abdon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d7fd5e18c7ce6073dedbfcf96ddfdaed73555235e40c6bb1aad2b284098663773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Calculus</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Decay</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Molecular</topic><topic>Operators (mathematics)</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power</topic><topic>Power law</topic><topic>Regular Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><creatorcontrib>Atangana, Abdon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Aguilar, J. F.</au><au>Atangana, Abdon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>132</volume><issue>1</issue><spage>13</spage><pages>13-</pages><artnum>13</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>.
Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator power-law-exponential-Mittag-Leffler kernel with three fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed. The results show that the new fractional operators are powerful mathematical tools to model complex problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2017-11293-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2017-01, Vol.132 (1), p.13, Article 13 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919897780 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Applied and Technical Physics Atomic Calculus Complex Systems Condensed Matter Physics Decay Mathematical and Computational Physics Mathematical functions Molecular Operators (mathematics) Optical and Plasma Physics Physics Physics and Astronomy Power Power law Regular Article Theoretical |
title | New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insight%20in%20fractional%20differentiation:%20power,%20exponential%20decay%20and%20Mittag-Leffler%20laws%20and%20applications&rft.jtitle=European%20physical%20journal%20plus&rft.au=G%C3%B3mez-Aguilar,%20J.%20F.&rft.date=2017-01-01&rft.volume=132&rft.issue=1&rft.spage=13&rft.pages=13-&rft.artnum=13&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2017-11293-3&rft_dat=%3Cproquest_cross%3E2919897780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919897780&rft_id=info:pmid/&rfr_iscdi=true |