Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance

Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized via a low-cost one-step...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2024-01, Vol.11 (3), p.837-844
Hauptverfasser: Zou, Zehua, Zheng, Zhenan, Chen, Yingyu, Shao, Yong, Zheng, Xuan, Zhao, Chuan, Wang, Qingxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 844
container_issue 3
container_start_page 837
container_title Inorganic chemistry frontiers
container_volume 11
creator Zou, Zehua
Zheng, Zhenan
Chen, Yingyu
Shao, Yong
Zheng, Xuan
Zhao, Chuan
Wang, Qingxiang
description Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized via a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm −2 in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm −2 , demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production. Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production.
doi_str_mv 10.1039/d3qi02046k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2919765778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919765778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</originalsourceid><addsrcrecordid>eNpNkVFLwzAUhYsoOOZefBcCvgnVJG3T9lHm1OFAhL2XNL1ZM9umS1LnfoN_2mhFfbqHcz7uhXOD4Jzga4Kj_KaKdgpTHLPXo2BCcUJDkiTR8T99Gsys3WKMCYkxYXgSfCxczTvdIKHbcrBO6S7k1irroEKSW4fsoXM1eAdpiZxRYQuON0i_qwos2itXIwPVIDy_MbyvoYMxRFIbZIcejPJCv4HhTYP23IG3-0Y5p7oN8rHnWt4JOAtOJG8szH7mNFjfL9bzx3D1_LCc365CQTPiwjwDKWVJaVzSLJFZzMpYllgwzIQUsmRElCyvZApxIkSV5xnlFU8qIDQrU4imweW4tjd6N4B1xVYPpvMXC5qTPGVJmmaeuhopYbS1BmTRG9VycygILr7qLu6il-V33U8evhhhY8Uv9_eO6BPR1IFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919765778</pqid></control><display><type>article</type><title>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zou, Zehua ; Zheng, Zhenan ; Chen, Yingyu ; Shao, Yong ; Zheng, Xuan ; Zhao, Chuan ; Wang, Qingxiang</creator><creatorcontrib>Zou, Zehua ; Zheng, Zhenan ; Chen, Yingyu ; Shao, Yong ; Zheng, Xuan ; Zhao, Chuan ; Wang, Qingxiang</creatorcontrib><description>Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized via a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm −2 in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm −2 , demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production. Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production.</description><identifier>ISSN: 2052-1553</identifier><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d3qi02046k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Combustion ; Crystal defects ; Current density ; Electrocatalysts ; Electrolysis ; Ethanol ; Flash point ; Graphene ; Hydrogen evolution reactions ; Hydrogen production ; Ignition temperature ; Metal oxides ; Nanocomposites ; Oxygen evolution reactions ; Water splitting</subject><ispartof>Inorganic chemistry frontiers, 2024-01, Vol.11 (3), p.837-844</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</citedby><cites>FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</cites><orcidid>0000-0002-8952-9925 ; 0009-0001-4572-8797 ; 0000-0001-5363-4865 ; 0000-0001-7007-5946 ; 0000-0003-0834-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zou, Zehua</creatorcontrib><creatorcontrib>Zheng, Zhenan</creatorcontrib><creatorcontrib>Chen, Yingyu</creatorcontrib><creatorcontrib>Shao, Yong</creatorcontrib><creatorcontrib>Zheng, Xuan</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Wang, Qingxiang</creatorcontrib><title>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</title><title>Inorganic chemistry frontiers</title><description>Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized via a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm −2 in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm −2 , demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production. Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production.</description><subject>Ambient temperature</subject><subject>Combustion</subject><subject>Crystal defects</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Ethanol</subject><subject>Flash point</subject><subject>Graphene</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Ignition temperature</subject><subject>Metal oxides</subject><subject>Nanocomposites</subject><subject>Oxygen evolution reactions</subject><subject>Water splitting</subject><issn>2052-1553</issn><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkVFLwzAUhYsoOOZefBcCvgnVJG3T9lHm1OFAhL2XNL1ZM9umS1LnfoN_2mhFfbqHcz7uhXOD4Jzga4Kj_KaKdgpTHLPXo2BCcUJDkiTR8T99Gsys3WKMCYkxYXgSfCxczTvdIKHbcrBO6S7k1irroEKSW4fsoXM1eAdpiZxRYQuON0i_qwos2itXIwPVIDy_MbyvoYMxRFIbZIcejPJCv4HhTYP23IG3-0Y5p7oN8rHnWt4JOAtOJG8szH7mNFjfL9bzx3D1_LCc365CQTPiwjwDKWVJaVzSLJFZzMpYllgwzIQUsmRElCyvZApxIkSV5xnlFU8qIDQrU4imweW4tjd6N4B1xVYPpvMXC5qTPGVJmmaeuhopYbS1BmTRG9VycygILr7qLu6il-V33U8evhhhY8Uv9_eO6BPR1IFI</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Zou, Zehua</creator><creator>Zheng, Zhenan</creator><creator>Chen, Yingyu</creator><creator>Shao, Yong</creator><creator>Zheng, Xuan</creator><creator>Zhao, Chuan</creator><creator>Wang, Qingxiang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8952-9925</orcidid><orcidid>https://orcid.org/0009-0001-4572-8797</orcidid><orcidid>https://orcid.org/0000-0001-5363-4865</orcidid><orcidid>https://orcid.org/0000-0001-7007-5946</orcidid><orcidid>https://orcid.org/0000-0003-0834-6244</orcidid></search><sort><creationdate>20240130</creationdate><title>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</title><author>Zou, Zehua ; Zheng, Zhenan ; Chen, Yingyu ; Shao, Yong ; Zheng, Xuan ; Zhao, Chuan ; Wang, Qingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Combustion</topic><topic>Crystal defects</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Ethanol</topic><topic>Flash point</topic><topic>Graphene</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Ignition temperature</topic><topic>Metal oxides</topic><topic>Nanocomposites</topic><topic>Oxygen evolution reactions</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Zehua</creatorcontrib><creatorcontrib>Zheng, Zhenan</creatorcontrib><creatorcontrib>Chen, Yingyu</creatorcontrib><creatorcontrib>Shao, Yong</creatorcontrib><creatorcontrib>Zheng, Xuan</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Wang, Qingxiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Zehua</au><au>Zheng, Zhenan</au><au>Chen, Yingyu</au><au>Shao, Yong</au><au>Zheng, Xuan</au><au>Zhao, Chuan</au><au>Wang, Qingxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2024-01-30</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>837</spage><epage>844</epage><pages>837-844</pages><issn>2052-1553</issn><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized via a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm −2 in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm −2 , demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production. Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3qi02046k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8952-9925</orcidid><orcidid>https://orcid.org/0009-0001-4572-8797</orcidid><orcidid>https://orcid.org/0000-0001-5363-4865</orcidid><orcidid>https://orcid.org/0000-0001-7007-5946</orcidid><orcidid>https://orcid.org/0000-0003-0834-6244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1553
ispartof Inorganic chemistry frontiers, 2024-01, Vol.11 (3), p.837-844
issn 2052-1553
2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2919765778
source Royal Society Of Chemistry Journals 2008-
subjects Ambient temperature
Combustion
Crystal defects
Current density
Electrocatalysts
Electrolysis
Ethanol
Flash point
Graphene
Hydrogen evolution reactions
Hydrogen production
Ignition temperature
Metal oxides
Nanocomposites
Oxygen evolution reactions
Water splitting
title Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethanol%20combustion-assisted%20fast%20synthesis%20of%20tri-metal%20oxides%20with%20reduced%20graphene%20oxide%20for%20superior%20overall%20water%20splitting%20performance&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Zou,%20Zehua&rft.date=2024-01-30&rft.volume=11&rft.issue=3&rft.spage=837&rft.epage=844&rft.pages=837-844&rft.issn=2052-1553&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d3qi02046k&rft_dat=%3Cproquest_rsc_p%3E2919765778%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919765778&rft_id=info:pmid/&rfr_iscdi=true