Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance
Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized via a low-cost one-step...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry frontiers 2024-01, Vol.11 (3), p.837-844 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 844 |
---|---|
container_issue | 3 |
container_start_page | 837 |
container_title | Inorganic chemistry frontiers |
container_volume | 11 |
creator | Zou, Zehua Zheng, Zhenan Chen, Yingyu Shao, Yong Zheng, Xuan Zhao, Chuan Wang, Qingxiang |
description | Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized
via
a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm
−2
in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm
−2
, demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production.
Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. |
doi_str_mv | 10.1039/d3qi02046k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2919765778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919765778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</originalsourceid><addsrcrecordid>eNpNkVFLwzAUhYsoOOZefBcCvgnVJG3T9lHm1OFAhL2XNL1ZM9umS1LnfoN_2mhFfbqHcz7uhXOD4Jzga4Kj_KaKdgpTHLPXo2BCcUJDkiTR8T99Gsys3WKMCYkxYXgSfCxczTvdIKHbcrBO6S7k1irroEKSW4fsoXM1eAdpiZxRYQuON0i_qwos2itXIwPVIDy_MbyvoYMxRFIbZIcejPJCv4HhTYP23IG3-0Y5p7oN8rHnWt4JOAtOJG8szH7mNFjfL9bzx3D1_LCc365CQTPiwjwDKWVJaVzSLJFZzMpYllgwzIQUsmRElCyvZApxIkSV5xnlFU8qIDQrU4imweW4tjd6N4B1xVYPpvMXC5qTPGVJmmaeuhopYbS1BmTRG9VycygILr7qLu6il-V33U8evhhhY8Uv9_eO6BPR1IFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919765778</pqid></control><display><type>article</type><title>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zou, Zehua ; Zheng, Zhenan ; Chen, Yingyu ; Shao, Yong ; Zheng, Xuan ; Zhao, Chuan ; Wang, Qingxiang</creator><creatorcontrib>Zou, Zehua ; Zheng, Zhenan ; Chen, Yingyu ; Shao, Yong ; Zheng, Xuan ; Zhao, Chuan ; Wang, Qingxiang</creatorcontrib><description>Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized
via
a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm
−2
in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm
−2
, demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production.
Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production.</description><identifier>ISSN: 2052-1553</identifier><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d3qi02046k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Combustion ; Crystal defects ; Current density ; Electrocatalysts ; Electrolysis ; Ethanol ; Flash point ; Graphene ; Hydrogen evolution reactions ; Hydrogen production ; Ignition temperature ; Metal oxides ; Nanocomposites ; Oxygen evolution reactions ; Water splitting</subject><ispartof>Inorganic chemistry frontiers, 2024-01, Vol.11 (3), p.837-844</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</citedby><cites>FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</cites><orcidid>0000-0002-8952-9925 ; 0009-0001-4572-8797 ; 0000-0001-5363-4865 ; 0000-0001-7007-5946 ; 0000-0003-0834-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zou, Zehua</creatorcontrib><creatorcontrib>Zheng, Zhenan</creatorcontrib><creatorcontrib>Chen, Yingyu</creatorcontrib><creatorcontrib>Shao, Yong</creatorcontrib><creatorcontrib>Zheng, Xuan</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Wang, Qingxiang</creatorcontrib><title>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</title><title>Inorganic chemistry frontiers</title><description>Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized
via
a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm
−2
in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm
−2
, demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production.
Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production.</description><subject>Ambient temperature</subject><subject>Combustion</subject><subject>Crystal defects</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Ethanol</subject><subject>Flash point</subject><subject>Graphene</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Ignition temperature</subject><subject>Metal oxides</subject><subject>Nanocomposites</subject><subject>Oxygen evolution reactions</subject><subject>Water splitting</subject><issn>2052-1553</issn><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkVFLwzAUhYsoOOZefBcCvgnVJG3T9lHm1OFAhL2XNL1ZM9umS1LnfoN_2mhFfbqHcz7uhXOD4Jzga4Kj_KaKdgpTHLPXo2BCcUJDkiTR8T99Gsys3WKMCYkxYXgSfCxczTvdIKHbcrBO6S7k1irroEKSW4fsoXM1eAdpiZxRYQuON0i_qwos2itXIwPVIDy_MbyvoYMxRFIbZIcejPJCv4HhTYP23IG3-0Y5p7oN8rHnWt4JOAtOJG8szH7mNFjfL9bzx3D1_LCc365CQTPiwjwDKWVJaVzSLJFZzMpYllgwzIQUsmRElCyvZApxIkSV5xnlFU8qIDQrU4imweW4tjd6N4B1xVYPpvMXC5qTPGVJmmaeuhopYbS1BmTRG9VycygILr7qLu6il-V33U8evhhhY8Uv9_eO6BPR1IFI</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Zou, Zehua</creator><creator>Zheng, Zhenan</creator><creator>Chen, Yingyu</creator><creator>Shao, Yong</creator><creator>Zheng, Xuan</creator><creator>Zhao, Chuan</creator><creator>Wang, Qingxiang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8952-9925</orcidid><orcidid>https://orcid.org/0009-0001-4572-8797</orcidid><orcidid>https://orcid.org/0000-0001-5363-4865</orcidid><orcidid>https://orcid.org/0000-0001-7007-5946</orcidid><orcidid>https://orcid.org/0000-0003-0834-6244</orcidid></search><sort><creationdate>20240130</creationdate><title>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</title><author>Zou, Zehua ; Zheng, Zhenan ; Chen, Yingyu ; Shao, Yong ; Zheng, Xuan ; Zhao, Chuan ; Wang, Qingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-98efffb224b285f846b4fb0c606cfcfb61cb69df7e45ccd9982ada5de128b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Combustion</topic><topic>Crystal defects</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Ethanol</topic><topic>Flash point</topic><topic>Graphene</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Ignition temperature</topic><topic>Metal oxides</topic><topic>Nanocomposites</topic><topic>Oxygen evolution reactions</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Zehua</creatorcontrib><creatorcontrib>Zheng, Zhenan</creatorcontrib><creatorcontrib>Chen, Yingyu</creatorcontrib><creatorcontrib>Shao, Yong</creatorcontrib><creatorcontrib>Zheng, Xuan</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Wang, Qingxiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Zehua</au><au>Zheng, Zhenan</au><au>Chen, Yingyu</au><au>Shao, Yong</au><au>Zheng, Xuan</au><au>Zhao, Chuan</au><au>Wang, Qingxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2024-01-30</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>837</spage><epage>844</epage><pages>837-844</pages><issn>2052-1553</issn><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production. Herein, a tri-metallic FeCoNi oxide composited with reduced graphene oxide was successfully synthesized
via
a low-cost one-step solution combustion method. The highly volatile nature of ethanol with its low flash point allows for easy initiation of solution combustion at ambient temperatures using a long-handled lighter, rather than requiring gradual heating to reach ignition temperature. Meanwhile, ethanol provides the source for the growth of reduced graphene oxide. The resulting nanocomposite exhibited a low crystallinity degree and abundant defects, which contributed to its superior bifunctional catalytic performance for the oxygen evolution reaction and the hydrogen evolution reaction in water electrolysis. The optimal electrocatalyst couples possessed a low cell voltage of 1.83 V at a current density of 100 mA cm
−2
in overall water splitting, while also exhibiting long-term stability for at least 170 h under a high current density of 100 mA cm
−2
, demonstrating its promise as a substitute for benchmark precious metal-based electrocatalysts used for hydrogen production.
Developing rapid and cost-effective methods for preparing electrocatalysts with high efficiency in water splitting is a critical issue in the field of hydrogen production.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3qi02046k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8952-9925</orcidid><orcidid>https://orcid.org/0009-0001-4572-8797</orcidid><orcidid>https://orcid.org/0000-0001-5363-4865</orcidid><orcidid>https://orcid.org/0000-0001-7007-5946</orcidid><orcidid>https://orcid.org/0000-0003-0834-6244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1553 |
ispartof | Inorganic chemistry frontiers, 2024-01, Vol.11 (3), p.837-844 |
issn | 2052-1553 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_2919765778 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Ambient temperature Combustion Crystal defects Current density Electrocatalysts Electrolysis Ethanol Flash point Graphene Hydrogen evolution reactions Hydrogen production Ignition temperature Metal oxides Nanocomposites Oxygen evolution reactions Water splitting |
title | Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethanol%20combustion-assisted%20fast%20synthesis%20of%20tri-metal%20oxides%20with%20reduced%20graphene%20oxide%20for%20superior%20overall%20water%20splitting%20performance&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Zou,%20Zehua&rft.date=2024-01-30&rft.volume=11&rft.issue=3&rft.spage=837&rft.epage=844&rft.pages=837-844&rft.issn=2052-1553&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d3qi02046k&rft_dat=%3Cproquest_rsc_p%3E2919765778%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919765778&rft_id=info:pmid/&rfr_iscdi=true |