Magnetic and optical properties of Co-doped ZnO nanorod arrays
In this study, Zn 1−x Co x O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the ob...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2020-01, Vol.135 (1), p.40, Article 40 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | European physical journal plus |
container_volume | 135 |
creator | Wang, Wei Zhang, Fuchun Wang, Xiaoyang Zhang, Shuili Yan, Junfeng Zhang, Weibin Zhang, Weihu |
description | In this study, Zn
1−x
Co
x
O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn
1−x
Co
x
O nanorod arrays were studied. Surface characterization showed Zn
1−x
Co
x
O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn
1−x
Co
x
O nanorod arrays. The room-temperature ferromagnetism of Zn
1−x
Co
x
O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10
–4
emu/g, the residual magnetization of 1.1 × 10
–4
emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn
1−x
Co
x
O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co
2+
doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co
3d
and O
2p
hybridization effects. The magnetic moments were mainly generated by Co
3d
and partial contribution of O
2p
orbital electrons. These results indicated that Zn
1−x
Co
x
O nanorod arrays can be used as potential magneto-optical materials. |
doi_str_mv | 10.1140/epjp/s13360-019-00086-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919739161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919739161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWLSfwYDn2JlNNru5CFL8B5Ve9OIlZDdJaambNdke2k9v6gp68zRv4L03w4-QK4QbRAEz12_6WULOJTBAxQCgluxwQiYFKmClEOL0jz4n05Q22QRCoVBiQm5fzKpzw7qlprM09FmZLe1j6F0c1i7R4Ok8MJt3S9-7Je1MF2Kw1MRo9umSnHmzTW76My_I28P96_yJLZaPz_O7BWs5FwMTvCgb00DB0WPFJTdlU4OzlSld3XonPQdrrJRlXQipam7RgCix8QUoyy2_INdjb_7sc-fSoDdhF7t8UhcKVcUVSsyuanS1MaQUndd9XH-YuNcI-shLH3npkZfOvPQ3L33IyXpMppzoVi7-9v8X_QLO5XDv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919739161</pqid></control><display><type>article</type><title>Magnetic and optical properties of Co-doped ZnO nanorod arrays</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, Wei ; Zhang, Fuchun ; Wang, Xiaoyang ; Zhang, Shuili ; Yan, Junfeng ; Zhang, Weibin ; Zhang, Weihu</creator><creatorcontrib>Wang, Wei ; Zhang, Fuchun ; Wang, Xiaoyang ; Zhang, Shuili ; Yan, Junfeng ; Zhang, Weibin ; Zhang, Weihu</creatorcontrib><description>In this study, Zn
1−x
Co
x
O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn
1−x
Co
x
O nanorod arrays were studied. Surface characterization showed Zn
1−x
Co
x
O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn
1−x
Co
x
O nanorod arrays. The room-temperature ferromagnetism of Zn
1−x
Co
x
O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10
–4
emu/g, the residual magnetization of 1.1 × 10
–4
emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn
1−x
Co
x
O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co
2+
doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co
3d
and O
2p
hybridization effects. The magnetic moments were mainly generated by Co
3d
and partial contribution of O
2p
orbital electrons. These results indicated that Zn
1−x
Co
x
O nanorod arrays can be used as potential magneto-optical materials.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-019-00086-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Arrays ; Atomic ; Cobalt ; Coercivity ; Complex Systems ; Condensed Matter Physics ; Crystal structure ; Doping ; Energy ; Ferromagnetism ; Growth conditions ; Hydrothermal crystal growth ; Magnetic moments ; Magnetic properties ; Magnetic saturation ; Magnetism ; Magnetron sputtering ; Mathematical and Computational Physics ; Molecular ; Nanomaterials ; Nanoparticles ; Nanorods ; Nanowires ; Optical and Plasma Physics ; Optical materials ; Optical properties ; Photoluminescence ; Physics ; Physics and Astronomy ; Polarization (spin alignment) ; Red shift ; Regular Article ; Room temperature ; Scanning electron microscopy ; Semiconductors ; Silicon substrates ; Silicon wafers ; Spectrum analysis ; Surface properties ; Temperature ; Theoretical ; Thin films ; Ultraviolet emission ; Wurtzite ; Zinc oxide</subject><ispartof>European physical journal plus, 2020-01, Vol.135 (1), p.40, Article 40</ispartof><rights>Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</citedby><cites>FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-019-00086-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919739161?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Fuchun</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Shuili</creatorcontrib><creatorcontrib>Yan, Junfeng</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Zhang, Weihu</creatorcontrib><title>Magnetic and optical properties of Co-doped ZnO nanorod arrays</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this study, Zn
1−x
Co
x
O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn
1−x
Co
x
O nanorod arrays were studied. Surface characterization showed Zn
1−x
Co
x
O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn
1−x
Co
x
O nanorod arrays. The room-temperature ferromagnetism of Zn
1−x
Co
x
O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10
–4
emu/g, the residual magnetization of 1.1 × 10
–4
emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn
1−x
Co
x
O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co
2+
doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co
3d
and O
2p
hybridization effects. The magnetic moments were mainly generated by Co
3d
and partial contribution of O
2p
orbital electrons. These results indicated that Zn
1−x
Co
x
O nanorod arrays can be used as potential magneto-optical materials.</description><subject>Applied and Technical Physics</subject><subject>Arrays</subject><subject>Atomic</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Doping</subject><subject>Energy</subject><subject>Ferromagnetism</subject><subject>Growth conditions</subject><subject>Hydrothermal crystal growth</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism</subject><subject>Magnetron sputtering</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanowires</subject><subject>Optical and Plasma Physics</subject><subject>Optical materials</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization (spin alignment)</subject><subject>Red shift</subject><subject>Regular Article</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Semiconductors</subject><subject>Silicon substrates</subject><subject>Silicon wafers</subject><subject>Spectrum analysis</subject><subject>Surface properties</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Thin films</subject><subject>Ultraviolet emission</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9LAzEQxYMoWLSfwYDn2JlNNru5CFL8B5Ve9OIlZDdJaambNdke2k9v6gp68zRv4L03w4-QK4QbRAEz12_6WULOJTBAxQCgluxwQiYFKmClEOL0jz4n05Q22QRCoVBiQm5fzKpzw7qlprM09FmZLe1j6F0c1i7R4Ok8MJt3S9-7Je1MF2Kw1MRo9umSnHmzTW76My_I28P96_yJLZaPz_O7BWs5FwMTvCgb00DB0WPFJTdlU4OzlSld3XonPQdrrJRlXQipam7RgCix8QUoyy2_INdjb_7sc-fSoDdhF7t8UhcKVcUVSsyuanS1MaQUndd9XH-YuNcI-shLH3npkZfOvPQ3L33IyXpMppzoVi7-9v8X_QLO5XDv</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Wei</creator><creator>Zhang, Fuchun</creator><creator>Wang, Xiaoyang</creator><creator>Zhang, Shuili</creator><creator>Yan, Junfeng</creator><creator>Zhang, Weibin</creator><creator>Zhang, Weihu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200101</creationdate><title>Magnetic and optical properties of Co-doped ZnO nanorod arrays</title><author>Wang, Wei ; Zhang, Fuchun ; Wang, Xiaoyang ; Zhang, Shuili ; Yan, Junfeng ; Zhang, Weibin ; Zhang, Weihu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Arrays</topic><topic>Atomic</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Doping</topic><topic>Energy</topic><topic>Ferromagnetism</topic><topic>Growth conditions</topic><topic>Hydrothermal crystal growth</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism</topic><topic>Magnetron sputtering</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanowires</topic><topic>Optical and Plasma Physics</topic><topic>Optical materials</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization (spin alignment)</topic><topic>Red shift</topic><topic>Regular Article</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Semiconductors</topic><topic>Silicon substrates</topic><topic>Silicon wafers</topic><topic>Spectrum analysis</topic><topic>Surface properties</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Thin films</topic><topic>Ultraviolet emission</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Fuchun</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Shuili</creatorcontrib><creatorcontrib>Yan, Junfeng</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Zhang, Weihu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Zhang, Fuchun</au><au>Wang, Xiaoyang</au><au>Zhang, Shuili</au><au>Yan, Junfeng</au><au>Zhang, Weibin</au><au>Zhang, Weihu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic and optical properties of Co-doped ZnO nanorod arrays</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>135</volume><issue>1</issue><spage>40</spage><pages>40-</pages><artnum>40</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this study, Zn
1−x
Co
x
O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn
1−x
Co
x
O nanorod arrays were studied. Surface characterization showed Zn
1−x
Co
x
O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn
1−x
Co
x
O nanorod arrays. The room-temperature ferromagnetism of Zn
1−x
Co
x
O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10
–4
emu/g, the residual magnetization of 1.1 × 10
–4
emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn
1−x
Co
x
O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co
2+
doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co
3d
and O
2p
hybridization effects. The magnetic moments were mainly generated by Co
3d
and partial contribution of O
2p
orbital electrons. These results indicated that Zn
1−x
Co
x
O nanorod arrays can be used as potential magneto-optical materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-019-00086-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2020-01, Vol.135 (1), p.40, Article 40 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919739161 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Applied and Technical Physics Arrays Atomic Cobalt Coercivity Complex Systems Condensed Matter Physics Crystal structure Doping Energy Ferromagnetism Growth conditions Hydrothermal crystal growth Magnetic moments Magnetic properties Magnetic saturation Magnetism Magnetron sputtering Mathematical and Computational Physics Molecular Nanomaterials Nanoparticles Nanorods Nanowires Optical and Plasma Physics Optical materials Optical properties Photoluminescence Physics Physics and Astronomy Polarization (spin alignment) Red shift Regular Article Room temperature Scanning electron microscopy Semiconductors Silicon substrates Silicon wafers Spectrum analysis Surface properties Temperature Theoretical Thin films Ultraviolet emission Wurtzite Zinc oxide |
title | Magnetic and optical properties of Co-doped ZnO nanorod arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20and%20optical%20properties%20of%20Co-doped%20ZnO%20nanorod%20arrays&rft.jtitle=European%20physical%20journal%20plus&rft.au=Wang,%20Wei&rft.date=2020-01-01&rft.volume=135&rft.issue=1&rft.spage=40&rft.pages=40-&rft.artnum=40&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-019-00086-z&rft_dat=%3Cproquest_cross%3E2919739161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919739161&rft_id=info:pmid/&rfr_iscdi=true |