Magnetic and optical properties of Co-doped ZnO nanorod arrays

In this study, Zn 1−x Co x O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2020-01, Vol.135 (1), p.40, Article 40
Hauptverfasser: Wang, Wei, Zhang, Fuchun, Wang, Xiaoyang, Zhang, Shuili, Yan, Junfeng, Zhang, Weibin, Zhang, Weihu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 40
container_title European physical journal plus
container_volume 135
creator Wang, Wei
Zhang, Fuchun
Wang, Xiaoyang
Zhang, Shuili
Yan, Junfeng
Zhang, Weibin
Zhang, Weihu
description In this study, Zn 1−x Co x O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn 1−x Co x O nanorod arrays were studied. Surface characterization showed Zn 1−x Co x O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn 1−x Co x O nanorod arrays. The room-temperature ferromagnetism of Zn 1−x Co x O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10 –4  emu/g, the residual magnetization of 1.1 × 10 –4  emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn 1−x Co x O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co 2+ doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co 3d and O 2p hybridization effects. The magnetic moments were mainly generated by Co 3d and partial contribution of O 2p orbital electrons. These results indicated that Zn 1−x Co x O nanorod arrays can be used as potential magneto-optical materials.
doi_str_mv 10.1140/epjp/s13360-019-00086-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919739161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919739161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWLSfwYDn2JlNNru5CFL8B5Ve9OIlZDdJaambNdke2k9v6gp68zRv4L03w4-QK4QbRAEz12_6WULOJTBAxQCgluxwQiYFKmClEOL0jz4n05Q22QRCoVBiQm5fzKpzw7qlprM09FmZLe1j6F0c1i7R4Ok8MJt3S9-7Je1MF2Kw1MRo9umSnHmzTW76My_I28P96_yJLZaPz_O7BWs5FwMTvCgb00DB0WPFJTdlU4OzlSld3XonPQdrrJRlXQipam7RgCix8QUoyy2_INdjb_7sc-fSoDdhF7t8UhcKVcUVSsyuanS1MaQUndd9XH-YuNcI-shLH3npkZfOvPQ3L33IyXpMppzoVi7-9v8X_QLO5XDv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919739161</pqid></control><display><type>article</type><title>Magnetic and optical properties of Co-doped ZnO nanorod arrays</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, Wei ; Zhang, Fuchun ; Wang, Xiaoyang ; Zhang, Shuili ; Yan, Junfeng ; Zhang, Weibin ; Zhang, Weihu</creator><creatorcontrib>Wang, Wei ; Zhang, Fuchun ; Wang, Xiaoyang ; Zhang, Shuili ; Yan, Junfeng ; Zhang, Weibin ; Zhang, Weihu</creatorcontrib><description>In this study, Zn 1−x Co x O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn 1−x Co x O nanorod arrays were studied. Surface characterization showed Zn 1−x Co x O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn 1−x Co x O nanorod arrays. The room-temperature ferromagnetism of Zn 1−x Co x O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10 –4  emu/g, the residual magnetization of 1.1 × 10 –4  emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn 1−x Co x O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co 2+ doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co 3d and O 2p hybridization effects. The magnetic moments were mainly generated by Co 3d and partial contribution of O 2p orbital electrons. These results indicated that Zn 1−x Co x O nanorod arrays can be used as potential magneto-optical materials.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-019-00086-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Arrays ; Atomic ; Cobalt ; Coercivity ; Complex Systems ; Condensed Matter Physics ; Crystal structure ; Doping ; Energy ; Ferromagnetism ; Growth conditions ; Hydrothermal crystal growth ; Magnetic moments ; Magnetic properties ; Magnetic saturation ; Magnetism ; Magnetron sputtering ; Mathematical and Computational Physics ; Molecular ; Nanomaterials ; Nanoparticles ; Nanorods ; Nanowires ; Optical and Plasma Physics ; Optical materials ; Optical properties ; Photoluminescence ; Physics ; Physics and Astronomy ; Polarization (spin alignment) ; Red shift ; Regular Article ; Room temperature ; Scanning electron microscopy ; Semiconductors ; Silicon substrates ; Silicon wafers ; Spectrum analysis ; Surface properties ; Temperature ; Theoretical ; Thin films ; Ultraviolet emission ; Wurtzite ; Zinc oxide</subject><ispartof>European physical journal plus, 2020-01, Vol.135 (1), p.40, Article 40</ispartof><rights>Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</citedby><cites>FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-019-00086-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919739161?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Fuchun</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Shuili</creatorcontrib><creatorcontrib>Yan, Junfeng</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Zhang, Weihu</creatorcontrib><title>Magnetic and optical properties of Co-doped ZnO nanorod arrays</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this study, Zn 1−x Co x O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn 1−x Co x O nanorod arrays were studied. Surface characterization showed Zn 1−x Co x O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn 1−x Co x O nanorod arrays. The room-temperature ferromagnetism of Zn 1−x Co x O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10 –4  emu/g, the residual magnetization of 1.1 × 10 –4  emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn 1−x Co x O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co 2+ doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co 3d and O 2p hybridization effects. The magnetic moments were mainly generated by Co 3d and partial contribution of O 2p orbital electrons. These results indicated that Zn 1−x Co x O nanorod arrays can be used as potential magneto-optical materials.</description><subject>Applied and Technical Physics</subject><subject>Arrays</subject><subject>Atomic</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Doping</subject><subject>Energy</subject><subject>Ferromagnetism</subject><subject>Growth conditions</subject><subject>Hydrothermal crystal growth</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism</subject><subject>Magnetron sputtering</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanowires</subject><subject>Optical and Plasma Physics</subject><subject>Optical materials</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization (spin alignment)</subject><subject>Red shift</subject><subject>Regular Article</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Semiconductors</subject><subject>Silicon substrates</subject><subject>Silicon wafers</subject><subject>Spectrum analysis</subject><subject>Surface properties</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Thin films</subject><subject>Ultraviolet emission</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9LAzEQxYMoWLSfwYDn2JlNNru5CFL8B5Ve9OIlZDdJaambNdke2k9v6gp68zRv4L03w4-QK4QbRAEz12_6WULOJTBAxQCgluxwQiYFKmClEOL0jz4n05Q22QRCoVBiQm5fzKpzw7qlprM09FmZLe1j6F0c1i7R4Ok8MJt3S9-7Je1MF2Kw1MRo9umSnHmzTW76My_I28P96_yJLZaPz_O7BWs5FwMTvCgb00DB0WPFJTdlU4OzlSld3XonPQdrrJRlXQipam7RgCix8QUoyy2_INdjb_7sc-fSoDdhF7t8UhcKVcUVSsyuanS1MaQUndd9XH-YuNcI-shLH3npkZfOvPQ3L33IyXpMppzoVi7-9v8X_QLO5XDv</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Wei</creator><creator>Zhang, Fuchun</creator><creator>Wang, Xiaoyang</creator><creator>Zhang, Shuili</creator><creator>Yan, Junfeng</creator><creator>Zhang, Weibin</creator><creator>Zhang, Weihu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200101</creationdate><title>Magnetic and optical properties of Co-doped ZnO nanorod arrays</title><author>Wang, Wei ; Zhang, Fuchun ; Wang, Xiaoyang ; Zhang, Shuili ; Yan, Junfeng ; Zhang, Weibin ; Zhang, Weihu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4325bab0231f17363a5b80ed7a5e8cfe6f30dad6658246983d1a0451bf209d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Arrays</topic><topic>Atomic</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Doping</topic><topic>Energy</topic><topic>Ferromagnetism</topic><topic>Growth conditions</topic><topic>Hydrothermal crystal growth</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism</topic><topic>Magnetron sputtering</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanowires</topic><topic>Optical and Plasma Physics</topic><topic>Optical materials</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization (spin alignment)</topic><topic>Red shift</topic><topic>Regular Article</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Semiconductors</topic><topic>Silicon substrates</topic><topic>Silicon wafers</topic><topic>Spectrum analysis</topic><topic>Surface properties</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Thin films</topic><topic>Ultraviolet emission</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Fuchun</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Shuili</creatorcontrib><creatorcontrib>Yan, Junfeng</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Zhang, Weihu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Zhang, Fuchun</au><au>Wang, Xiaoyang</au><au>Zhang, Shuili</au><au>Yan, Junfeng</au><au>Zhang, Weibin</au><au>Zhang, Weihu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic and optical properties of Co-doped ZnO nanorod arrays</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>135</volume><issue>1</issue><spage>40</spage><pages>40-</pages><artnum>40</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this study, Zn 1−x Co x O nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn 1−x Co x O nanorod arrays were studied. Surface characterization showed Zn 1−x Co x O nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn 1−x Co x O nanorod arrays. The room-temperature ferromagnetism of Zn 1−x Co x O nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10 –4  emu/g, the residual magnetization of 1.1 × 10 –4  emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn 1−x Co x O nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co 2+ doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co 3d and O 2p hybridization effects. The magnetic moments were mainly generated by Co 3d and partial contribution of O 2p orbital electrons. These results indicated that Zn 1−x Co x O nanorod arrays can be used as potential magneto-optical materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-019-00086-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2020-01, Vol.135 (1), p.40, Article 40
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919739161
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied and Technical Physics
Arrays
Atomic
Cobalt
Coercivity
Complex Systems
Condensed Matter Physics
Crystal structure
Doping
Energy
Ferromagnetism
Growth conditions
Hydrothermal crystal growth
Magnetic moments
Magnetic properties
Magnetic saturation
Magnetism
Magnetron sputtering
Mathematical and Computational Physics
Molecular
Nanomaterials
Nanoparticles
Nanorods
Nanowires
Optical and Plasma Physics
Optical materials
Optical properties
Photoluminescence
Physics
Physics and Astronomy
Polarization (spin alignment)
Red shift
Regular Article
Room temperature
Scanning electron microscopy
Semiconductors
Silicon substrates
Silicon wafers
Spectrum analysis
Surface properties
Temperature
Theoretical
Thin films
Ultraviolet emission
Wurtzite
Zinc oxide
title Magnetic and optical properties of Co-doped ZnO nanorod arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20and%20optical%20properties%20of%20Co-doped%20ZnO%20nanorod%20arrays&rft.jtitle=European%20physical%20journal%20plus&rft.au=Wang,%20Wei&rft.date=2020-01-01&rft.volume=135&rft.issue=1&rft.spage=40&rft.pages=40-&rft.artnum=40&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-019-00086-z&rft_dat=%3Cproquest_cross%3E2919739161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919739161&rft_id=info:pmid/&rfr_iscdi=true