On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle
This study deals with the extended version of Yamada–Ota and Xue models of hybrid nanofluid on the moving needle surface. Here, we have examined the hybrid nanofluid flow of magnetic hydrodynamics and thermal slip over a thin moving needle. We also take the assumption of the variable thermal conduct...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2020-02, Vol.135 (2), p.145, Article 145 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | European physical journal plus |
container_volume | 135 |
creator | Abbas, Nadeem Malik, M. Y. Nadeem, S. Alarifi, Ibrahim M. |
description | This study deals with the extended version of Yamada–Ota and Xue models of hybrid nanofluid on the moving needle surface. Here, we have examined the hybrid nanofluid flow of magnetic hydrodynamics and thermal slip over a thin moving needle. We also take the assumption of the variable thermal conductivity and viscosity of hybrid nanomaterial fluid. Two kinds of nanoparticles, namely
SWCNT
and
MWCNT
, with pure water as base fluid are considered. A mathematical model has been developed under the assumption of hybrid nanofluid flow over the moving needle surface. The system of governing partial differential equations is converted into a system of nondimensional ordinary differential equations by applying the suitable similarity transformation. Dimensionless system is elucidated numerically by software built in technique bvp4c. The effects of the governing parameters are emphasized by graphs and tables. |
doi_str_mv | 10.1140/epjp/s13360-020-00185-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919739047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919739047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8185b38ffb7652ffd00ac035e4b941893606f1f05ddd8e1318937c9183b9edca3</originalsourceid><addsrcrecordid>eNqFkM1KxDAQgIMouOg-gwHPdZMm3TZHWfyDhb0o6imkzWTt0iY1aRf35jv4hj6JWSvozUDIkJlvkvkQOqPkglJOZtBtulmgjM1JQtK4CS2yJD1Ak5QKkmSc88M_8TGahrAhcXFBueAT9LiyGN56sBo03oIPtbPYGfysWqXV5_vHqldYWY2fBsCt09CEffplV_paY6usM80Qo0i1blvbNbYAuoFTdGRUE2D6c56gh-ur-8Vtslzd3C0ul0nFGO-TIn63ZIUxZT7PUmM0IaoiLANeCk4LEeeaG2pIprUugLL9VV4JWrBSgK4UO0HnY9_Ou9cBQi83bvA2PilTQUXOBOF5rMrHqsq7EDwY2fm6VX4nKZF7kXIvUo4iZRQpv0XKNJLFSIZI2DX43_7_oV-5LnoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919739047</pqid></control><display><type>article</type><title>On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Abbas, Nadeem ; Malik, M. Y. ; Nadeem, S. ; Alarifi, Ibrahim M.</creator><creatorcontrib>Abbas, Nadeem ; Malik, M. Y. ; Nadeem, S. ; Alarifi, Ibrahim M.</creatorcontrib><description>This study deals with the extended version of Yamada–Ota and Xue models of hybrid nanofluid on the moving needle surface. Here, we have examined the hybrid nanofluid flow of magnetic hydrodynamics and thermal slip over a thin moving needle. We also take the assumption of the variable thermal conductivity and viscosity of hybrid nanomaterial fluid. Two kinds of nanoparticles, namely
SWCNT
and
MWCNT
, with pure water as base fluid are considered. A mathematical model has been developed under the assumption of hybrid nanofluid flow over the moving needle surface. The system of governing partial differential equations is converted into a system of nondimensional ordinary differential equations by applying the suitable similarity transformation. Dimensionless system is elucidated numerically by software built in technique bvp4c. The effects of the governing parameters are emphasized by graphs and tables.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-020-00185-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Boundary conditions ; Complex Systems ; Condensed Matter Physics ; Differential equations ; Dimensionless numbers ; Fluid flow ; Heat conductivity ; Heat transfer ; Hydrodynamics ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Nanofluids ; Nanomaterials ; Nanoparticles ; Nuclear power plants ; Optical and Plasma Physics ; Ordinary differential equations ; Partial differential equations ; Physics ; Physics and Astronomy ; Radiation ; Regular Article ; Skin ; Solar energy ; Theoretical ; Thermal conductivity ; Velocity ; Viscosity</subject><ispartof>European physical journal plus, 2020-02, Vol.135 (2), p.145, Article 145</ispartof><rights>Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8185b38ffb7652ffd00ac035e4b941893606f1f05ddd8e1318937c9183b9edca3</citedby><cites>FETCH-LOGICAL-c334t-8185b38ffb7652ffd00ac035e4b941893606f1f05ddd8e1318937c9183b9edca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-020-00185-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919739047?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Abbas, Nadeem</creatorcontrib><creatorcontrib>Malik, M. Y.</creatorcontrib><creatorcontrib>Nadeem, S.</creatorcontrib><creatorcontrib>Alarifi, Ibrahim M.</creatorcontrib><title>On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This study deals with the extended version of Yamada–Ota and Xue models of hybrid nanofluid on the moving needle surface. Here, we have examined the hybrid nanofluid flow of magnetic hydrodynamics and thermal slip over a thin moving needle. We also take the assumption of the variable thermal conductivity and viscosity of hybrid nanomaterial fluid. Two kinds of nanoparticles, namely
SWCNT
and
MWCNT
, with pure water as base fluid are considered. A mathematical model has been developed under the assumption of hybrid nanofluid flow over the moving needle surface. The system of governing partial differential equations is converted into a system of nondimensional ordinary differential equations by applying the suitable similarity transformation. Dimensionless system is elucidated numerically by software built in technique bvp4c. The effects of the governing parameters are emphasized by graphs and tables.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Dimensionless numbers</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nuclear power plants</subject><subject>Optical and Plasma Physics</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Regular Article</subject><subject>Skin</subject><subject>Solar energy</subject><subject>Theoretical</subject><subject>Thermal conductivity</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkM1KxDAQgIMouOg-gwHPdZMm3TZHWfyDhb0o6imkzWTt0iY1aRf35jv4hj6JWSvozUDIkJlvkvkQOqPkglJOZtBtulmgjM1JQtK4CS2yJD1Ak5QKkmSc88M_8TGahrAhcXFBueAT9LiyGN56sBo03oIPtbPYGfysWqXV5_vHqldYWY2fBsCt09CEffplV_paY6usM80Qo0i1blvbNbYAuoFTdGRUE2D6c56gh-ur-8Vtslzd3C0ul0nFGO-TIn63ZIUxZT7PUmM0IaoiLANeCk4LEeeaG2pIprUugLL9VV4JWrBSgK4UO0HnY9_Ou9cBQi83bvA2PilTQUXOBOF5rMrHqsq7EDwY2fm6VX4nKZF7kXIvUo4iZRQpv0XKNJLFSIZI2DX43_7_oV-5LnoY</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Abbas, Nadeem</creator><creator>Malik, M. Y.</creator><creator>Nadeem, S.</creator><creator>Alarifi, Ibrahim M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200201</creationdate><title>On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle</title><author>Abbas, Nadeem ; Malik, M. Y. ; Nadeem, S. ; Alarifi, Ibrahim M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8185b38ffb7652ffd00ac035e4b941893606f1f05ddd8e1318937c9183b9edca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Dimensionless numbers</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nuclear power plants</topic><topic>Optical and Plasma Physics</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Regular Article</topic><topic>Skin</topic><topic>Solar energy</topic><topic>Theoretical</topic><topic>Thermal conductivity</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Nadeem</creatorcontrib><creatorcontrib>Malik, M. Y.</creatorcontrib><creatorcontrib>Nadeem, S.</creatorcontrib><creatorcontrib>Alarifi, Ibrahim M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, Nadeem</au><au>Malik, M. Y.</au><au>Nadeem, S.</au><au>Alarifi, Ibrahim M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>135</volume><issue>2</issue><spage>145</spage><pages>145-</pages><artnum>145</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This study deals with the extended version of Yamada–Ota and Xue models of hybrid nanofluid on the moving needle surface. Here, we have examined the hybrid nanofluid flow of magnetic hydrodynamics and thermal slip over a thin moving needle. We also take the assumption of the variable thermal conductivity and viscosity of hybrid nanomaterial fluid. Two kinds of nanoparticles, namely
SWCNT
and
MWCNT
, with pure water as base fluid are considered. A mathematical model has been developed under the assumption of hybrid nanofluid flow over the moving needle surface. The system of governing partial differential equations is converted into a system of nondimensional ordinary differential equations by applying the suitable similarity transformation. Dimensionless system is elucidated numerically by software built in technique bvp4c. The effects of the governing parameters are emphasized by graphs and tables.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-020-00185-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2020-02, Vol.135 (2), p.145, Article 145 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919739047 |
source | SpringerLink Journals; ProQuest Central |
subjects | Applied and Technical Physics Approximation Atomic Boundary conditions Complex Systems Condensed Matter Physics Differential equations Dimensionless numbers Fluid flow Heat conductivity Heat transfer Hydrodynamics Mathematical and Computational Physics Mathematical models Molecular Nanofluids Nanomaterials Nanoparticles Nuclear power plants Optical and Plasma Physics Ordinary differential equations Partial differential equations Physics Physics and Astronomy Radiation Regular Article Skin Solar energy Theoretical Thermal conductivity Velocity Viscosity |
title | On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20extended%20version%20of%20Yamada%E2%80%93Ota%20and%20Xue%20models%20of%20hybrid%20nanofluid%20on%20moving%20needle&rft.jtitle=European%20physical%20journal%20plus&rft.au=Abbas,%20Nadeem&rft.date=2020-02-01&rft.volume=135&rft.issue=2&rft.spage=145&rft.pages=145-&rft.artnum=145&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-020-00185-2&rft_dat=%3Cproquest_cross%3E2919739047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919739047&rft_id=info:pmid/&rfr_iscdi=true |