Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology
Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical app...
Gespeichert in:
Veröffentlicht in: | Bulletin of materials science 2022-09, Vol.45 (3), p.133, Article 133 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 133 |
container_title | Bulletin of materials science |
container_volume | 45 |
creator | Prabu, G T V Guruprasad, R Sundaramoorthy, C Vigneshwaran, N |
description | Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with
R
2
value of 0.91 and adjusted
R
2
value of 0.83. This model predicted the SSA of 2.34 m
2
g
−1
for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min
−1
flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat. |
doi_str_mv | 10.1007/s12034-022-02712-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919736223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919736223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA62qSdtJ2qcP4A4IuZh_S29uZDm1Sk3QxPoDPbcYquhISciHn-0IOIZecXXPG8hvPBUuzhAkRd85FIo_IjJV5muRSlsd_5lNy5v2OMV5mGZ-Rj1dnAb2ndght377r0FpDtalpb2vsutZsaNgivVutqR9dowGpdqipbSh2CMFZP4yGQmTHzvp4Cxh0QGq0sU1bOfR09IeaOA3WROKnp8ewtbXt7GZ_Tk4a3Xm8-D7nZH2_Wi8fk-eXh6fl7XMCIitDUqCEXGZVUwupmxolFhyhEiCZFkVZlCwDDYsmrqoSGoAXaQFQ5TpdFAWkc3I11Q7Ovo3og9rZ0Zn4ohIlj4qkEGmkxERB_Jx32KjBtb12e8WZOuhWk24Vdasv3UrGUDqFfITNBt1v9T-pT5k3h04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919736223</pqid></control><display><type>article</type><title>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</title><source>Indian Academy of Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Prabu, G T V ; Guruprasad, R ; Sundaramoorthy, C ; Vigneshwaran, N</creator><creatorcontrib>Prabu, G T V ; Guruprasad, R ; Sundaramoorthy, C ; Vigneshwaran, N</creatorcontrib><description>Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with
R
2
value of 0.91 and adjusted
R
2
value of 0.83. This model predicted the SSA of 2.34 m
2
g
−1
for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min
−1
flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.</description><identifier>ISSN: 0973-7669</identifier><identifier>ISSN: 0250-4707</identifier><identifier>EISSN: 0973-7669</identifier><identifier>DOI: 10.1007/s12034-022-02712-6</identifier><language>eng</language><publisher>Bangalore: Indian Academy of Sciences</publisher><subject>Adsorption ; Cellulose acetate ; Chemistry and Materials Science ; Design ; Electric potential ; Electron microscopes ; Electrospinning ; Engineering ; Experiments ; Flow velocity ; Gases ; Materials Science ; Mathematical models ; Morphology ; Nanofibers ; Nanosensors ; Photovoltaic cells ; Polymers ; Pore size ; Process parameters ; Protective clothing ; Response surface methodology ; Software ; Solar cells ; Surface area ; Tissue engineering ; Variables ; Variance analysis ; Voltage</subject><ispartof>Bulletin of materials science, 2022-09, Vol.45 (3), p.133, Article 133</ispartof><rights>Indian Academy of Sciences 2022</rights><rights>Indian Academy of Sciences 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</citedby><cites>FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</cites><orcidid>0000-0002-8456-4465 ; 0000-0002-5198-5140 ; 0000-0002-2330-8273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2919736223/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919736223?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294,74045</link.rule.ids></links><search><creatorcontrib>Prabu, G T V</creatorcontrib><creatorcontrib>Guruprasad, R</creatorcontrib><creatorcontrib>Sundaramoorthy, C</creatorcontrib><creatorcontrib>Vigneshwaran, N</creatorcontrib><title>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</title><title>Bulletin of materials science</title><addtitle>Bull Mater Sci</addtitle><description>Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with
R
2
value of 0.91 and adjusted
R
2
value of 0.83. This model predicted the SSA of 2.34 m
2
g
−1
for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min
−1
flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.</description><subject>Adsorption</subject><subject>Cellulose acetate</subject><subject>Chemistry and Materials Science</subject><subject>Design</subject><subject>Electric potential</subject><subject>Electron microscopes</subject><subject>Electrospinning</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Flow velocity</subject><subject>Gases</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Nanosensors</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Pore size</subject><subject>Process parameters</subject><subject>Protective clothing</subject><subject>Response surface methodology</subject><subject>Software</subject><subject>Solar cells</subject><subject>Surface area</subject><subject>Tissue engineering</subject><subject>Variables</subject><subject>Variance analysis</subject><subject>Voltage</subject><issn>0973-7669</issn><issn>0250-4707</issn><issn>0973-7669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAURoMoOI6-gKuA62qSdtJ2qcP4A4IuZh_S29uZDm1Sk3QxPoDPbcYquhISciHn-0IOIZecXXPG8hvPBUuzhAkRd85FIo_IjJV5muRSlsd_5lNy5v2OMV5mGZ-Rj1dnAb2ndght377r0FpDtalpb2vsutZsaNgivVutqR9dowGpdqipbSh2CMFZP4yGQmTHzvp4Cxh0QGq0sU1bOfR09IeaOA3WROKnp8ewtbXt7GZ_Tk4a3Xm8-D7nZH2_Wi8fk-eXh6fl7XMCIitDUqCEXGZVUwupmxolFhyhEiCZFkVZlCwDDYsmrqoSGoAXaQFQ5TpdFAWkc3I11Q7Ovo3og9rZ0Zn4ohIlj4qkEGmkxERB_Jx32KjBtb12e8WZOuhWk24Vdasv3UrGUDqFfITNBt1v9T-pT5k3h04</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Prabu, G T V</creator><creator>Guruprasad, R</creator><creator>Sundaramoorthy, C</creator><creator>Vigneshwaran, N</creator><general>Indian Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8456-4465</orcidid><orcidid>https://orcid.org/0000-0002-5198-5140</orcidid><orcidid>https://orcid.org/0000-0002-2330-8273</orcidid></search><sort><creationdate>20220901</creationdate><title>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</title><author>Prabu, G T V ; Guruprasad, R ; Sundaramoorthy, C ; Vigneshwaran, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Cellulose acetate</topic><topic>Chemistry and Materials Science</topic><topic>Design</topic><topic>Electric potential</topic><topic>Electron microscopes</topic><topic>Electrospinning</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Flow velocity</topic><topic>Gases</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Nanosensors</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Pore size</topic><topic>Process parameters</topic><topic>Protective clothing</topic><topic>Response surface methodology</topic><topic>Software</topic><topic>Solar cells</topic><topic>Surface area</topic><topic>Tissue engineering</topic><topic>Variables</topic><topic>Variance analysis</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabu, G T V</creatorcontrib><creatorcontrib>Guruprasad, R</creatorcontrib><creatorcontrib>Sundaramoorthy, C</creatorcontrib><creatorcontrib>Vigneshwaran, N</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Bulletin of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabu, G T V</au><au>Guruprasad, R</au><au>Sundaramoorthy, C</au><au>Vigneshwaran, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</atitle><jtitle>Bulletin of materials science</jtitle><stitle>Bull Mater Sci</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>45</volume><issue>3</issue><spage>133</spage><pages>133-</pages><artnum>133</artnum><issn>0973-7669</issn><issn>0250-4707</issn><eissn>0973-7669</eissn><abstract>Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with
R
2
value of 0.91 and adjusted
R
2
value of 0.83. This model predicted the SSA of 2.34 m
2
g
−1
for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min
−1
flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.</abstract><cop>Bangalore</cop><pub>Indian Academy of Sciences</pub><doi>10.1007/s12034-022-02712-6</doi><orcidid>https://orcid.org/0000-0002-8456-4465</orcidid><orcidid>https://orcid.org/0000-0002-5198-5140</orcidid><orcidid>https://orcid.org/0000-0002-2330-8273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-7669 |
ispartof | Bulletin of materials science, 2022-09, Vol.45 (3), p.133, Article 133 |
issn | 0973-7669 0250-4707 0973-7669 |
language | eng |
recordid | cdi_proquest_journals_2919736223 |
source | Indian Academy of Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Adsorption Cellulose acetate Chemistry and Materials Science Design Electric potential Electron microscopes Electrospinning Engineering Experiments Flow velocity Gases Materials Science Mathematical models Morphology Nanofibers Nanosensors Photovoltaic cells Polymers Pore size Process parameters Protective clothing Response surface methodology Software Solar cells Surface area Tissue engineering Variables Variance analysis Voltage |
title | Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20optimization%20and%20modelling%20the%20BET%20surface%20area%20of%20electrospun%20cellulose%20acetate%20nanofibres%20using%20response%20surface%20methodology&rft.jtitle=Bulletin%20of%20materials%20science&rft.au=Prabu,%20G%20T%20V&rft.date=2022-09-01&rft.volume=45&rft.issue=3&rft.spage=133&rft.pages=133-&rft.artnum=133&rft.issn=0973-7669&rft.eissn=0973-7669&rft_id=info:doi/10.1007/s12034-022-02712-6&rft_dat=%3Cproquest_cross%3E2919736223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919736223&rft_id=info:pmid/&rfr_iscdi=true |