Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology

Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of materials science 2022-09, Vol.45 (3), p.133, Article 133
Hauptverfasser: Prabu, G T V, Guruprasad, R, Sundaramoorthy, C, Vigneshwaran, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 133
container_title Bulletin of materials science
container_volume 45
creator Prabu, G T V
Guruprasad, R
Sundaramoorthy, C
Vigneshwaran, N
description Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with R 2 value of 0.91 and adjusted R 2 value of 0.83. This model predicted the SSA of 2.34 m 2 g −1 for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min −1 flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.
doi_str_mv 10.1007/s12034-022-02712-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919736223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919736223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA62qSdtJ2qcP4A4IuZh_S29uZDm1Sk3QxPoDPbcYquhISciHn-0IOIZecXXPG8hvPBUuzhAkRd85FIo_IjJV5muRSlsd_5lNy5v2OMV5mGZ-Rj1dnAb2ndght377r0FpDtalpb2vsutZsaNgivVutqR9dowGpdqipbSh2CMFZP4yGQmTHzvp4Cxh0QGq0sU1bOfR09IeaOA3WROKnp8ewtbXt7GZ_Tk4a3Xm8-D7nZH2_Wi8fk-eXh6fl7XMCIitDUqCEXGZVUwupmxolFhyhEiCZFkVZlCwDDYsmrqoSGoAXaQFQ5TpdFAWkc3I11Q7Ovo3og9rZ0Zn4ohIlj4qkEGmkxERB_Jx32KjBtb12e8WZOuhWk24Vdasv3UrGUDqFfITNBt1v9T-pT5k3h04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919736223</pqid></control><display><type>article</type><title>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</title><source>Indian Academy of Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Prabu, G T V ; Guruprasad, R ; Sundaramoorthy, C ; Vigneshwaran, N</creator><creatorcontrib>Prabu, G T V ; Guruprasad, R ; Sundaramoorthy, C ; Vigneshwaran, N</creatorcontrib><description>Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with R 2 value of 0.91 and adjusted R 2 value of 0.83. This model predicted the SSA of 2.34 m 2 g −1 for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min −1 flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.</description><identifier>ISSN: 0973-7669</identifier><identifier>ISSN: 0250-4707</identifier><identifier>EISSN: 0973-7669</identifier><identifier>DOI: 10.1007/s12034-022-02712-6</identifier><language>eng</language><publisher>Bangalore: Indian Academy of Sciences</publisher><subject>Adsorption ; Cellulose acetate ; Chemistry and Materials Science ; Design ; Electric potential ; Electron microscopes ; Electrospinning ; Engineering ; Experiments ; Flow velocity ; Gases ; Materials Science ; Mathematical models ; Morphology ; Nanofibers ; Nanosensors ; Photovoltaic cells ; Polymers ; Pore size ; Process parameters ; Protective clothing ; Response surface methodology ; Software ; Solar cells ; Surface area ; Tissue engineering ; Variables ; Variance analysis ; Voltage</subject><ispartof>Bulletin of materials science, 2022-09, Vol.45 (3), p.133, Article 133</ispartof><rights>Indian Academy of Sciences 2022</rights><rights>Indian Academy of Sciences 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</citedby><cites>FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</cites><orcidid>0000-0002-8456-4465 ; 0000-0002-5198-5140 ; 0000-0002-2330-8273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2919736223/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919736223?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294,74045</link.rule.ids></links><search><creatorcontrib>Prabu, G T V</creatorcontrib><creatorcontrib>Guruprasad, R</creatorcontrib><creatorcontrib>Sundaramoorthy, C</creatorcontrib><creatorcontrib>Vigneshwaran, N</creatorcontrib><title>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</title><title>Bulletin of materials science</title><addtitle>Bull Mater Sci</addtitle><description>Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with R 2 value of 0.91 and adjusted R 2 value of 0.83. This model predicted the SSA of 2.34 m 2 g −1 for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min −1 flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.</description><subject>Adsorption</subject><subject>Cellulose acetate</subject><subject>Chemistry and Materials Science</subject><subject>Design</subject><subject>Electric potential</subject><subject>Electron microscopes</subject><subject>Electrospinning</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Flow velocity</subject><subject>Gases</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Nanosensors</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Pore size</subject><subject>Process parameters</subject><subject>Protective clothing</subject><subject>Response surface methodology</subject><subject>Software</subject><subject>Solar cells</subject><subject>Surface area</subject><subject>Tissue engineering</subject><subject>Variables</subject><subject>Variance analysis</subject><subject>Voltage</subject><issn>0973-7669</issn><issn>0250-4707</issn><issn>0973-7669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAURoMoOI6-gKuA62qSdtJ2qcP4A4IuZh_S29uZDm1Sk3QxPoDPbcYquhISciHn-0IOIZecXXPG8hvPBUuzhAkRd85FIo_IjJV5muRSlsd_5lNy5v2OMV5mGZ-Rj1dnAb2ndght377r0FpDtalpb2vsutZsaNgivVutqR9dowGpdqipbSh2CMFZP4yGQmTHzvp4Cxh0QGq0sU1bOfR09IeaOA3WROKnp8ewtbXt7GZ_Tk4a3Xm8-D7nZH2_Wi8fk-eXh6fl7XMCIitDUqCEXGZVUwupmxolFhyhEiCZFkVZlCwDDYsmrqoSGoAXaQFQ5TpdFAWkc3I11Q7Ovo3og9rZ0Zn4ohIlj4qkEGmkxERB_Jx32KjBtb12e8WZOuhWk24Vdasv3UrGUDqFfITNBt1v9T-pT5k3h04</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Prabu, G T V</creator><creator>Guruprasad, R</creator><creator>Sundaramoorthy, C</creator><creator>Vigneshwaran, N</creator><general>Indian Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8456-4465</orcidid><orcidid>https://orcid.org/0000-0002-5198-5140</orcidid><orcidid>https://orcid.org/0000-0002-2330-8273</orcidid></search><sort><creationdate>20220901</creationdate><title>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</title><author>Prabu, G T V ; Guruprasad, R ; Sundaramoorthy, C ; Vigneshwaran, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-8e6c764bfd26afde6e81ecb2c60a2898904cac5fc5fbb2acc1838ccb7a3588c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Cellulose acetate</topic><topic>Chemistry and Materials Science</topic><topic>Design</topic><topic>Electric potential</topic><topic>Electron microscopes</topic><topic>Electrospinning</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Flow velocity</topic><topic>Gases</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Nanosensors</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Pore size</topic><topic>Process parameters</topic><topic>Protective clothing</topic><topic>Response surface methodology</topic><topic>Software</topic><topic>Solar cells</topic><topic>Surface area</topic><topic>Tissue engineering</topic><topic>Variables</topic><topic>Variance analysis</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabu, G T V</creatorcontrib><creatorcontrib>Guruprasad, R</creatorcontrib><creatorcontrib>Sundaramoorthy, C</creatorcontrib><creatorcontrib>Vigneshwaran, N</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Bulletin of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabu, G T V</au><au>Guruprasad, R</au><au>Sundaramoorthy, C</au><au>Vigneshwaran, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology</atitle><jtitle>Bulletin of materials science</jtitle><stitle>Bull Mater Sci</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>45</volume><issue>3</issue><spage>133</spage><pages>133-</pages><artnum>133</artnum><issn>0973-7669</issn><issn>0250-4707</issn><eissn>0973-7669</eissn><abstract>Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with R 2 value of 0.91 and adjusted R 2 value of 0.83. This model predicted the SSA of 2.34 m 2 g −1 for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min −1 flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.</abstract><cop>Bangalore</cop><pub>Indian Academy of Sciences</pub><doi>10.1007/s12034-022-02712-6</doi><orcidid>https://orcid.org/0000-0002-8456-4465</orcidid><orcidid>https://orcid.org/0000-0002-5198-5140</orcidid><orcidid>https://orcid.org/0000-0002-2330-8273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-7669
ispartof Bulletin of materials science, 2022-09, Vol.45 (3), p.133, Article 133
issn 0973-7669
0250-4707
0973-7669
language eng
recordid cdi_proquest_journals_2919736223
source Indian Academy of Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Adsorption
Cellulose acetate
Chemistry and Materials Science
Design
Electric potential
Electron microscopes
Electrospinning
Engineering
Experiments
Flow velocity
Gases
Materials Science
Mathematical models
Morphology
Nanofibers
Nanosensors
Photovoltaic cells
Polymers
Pore size
Process parameters
Protective clothing
Response surface methodology
Software
Solar cells
Surface area
Tissue engineering
Variables
Variance analysis
Voltage
title Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20optimization%20and%20modelling%20the%20BET%20surface%20area%20of%20electrospun%20cellulose%20acetate%20nanofibres%20using%20response%20surface%20methodology&rft.jtitle=Bulletin%20of%20materials%20science&rft.au=Prabu,%20G%20T%20V&rft.date=2022-09-01&rft.volume=45&rft.issue=3&rft.spage=133&rft.pages=133-&rft.artnum=133&rft.issn=0973-7669&rft.eissn=0973-7669&rft_id=info:doi/10.1007/s12034-022-02712-6&rft_dat=%3Cproquest_cross%3E2919736223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919736223&rft_id=info:pmid/&rfr_iscdi=true