Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect
The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2023-06, Vol.138 (6), p.489, Article 489 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 489 |
container_title | European physical journal plus |
container_volume | 138 |
creator | Jakeer, Shaik Reddy, S. R. R. |
description | The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski. |
doi_str_mv | 10.1140/epjp/s13360-023-04118-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919734780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919734780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_gwHPa_PVZvcopX5AwYueQzY7adPuZtdk19J_b-oKejOXvAPzzAwPQreU3FMqyBy6fTePlPMlyQjjGRGU5pm8QBNGC5IthBCXf_I1msW4J-mJgopCTFCzrsH0oT04D70zuIGmDNoD7oamc36Lbd0ecWvx7lQGV2GvfWvrISXnscafEBKla9w4E9p-KAEfXb_DO9A9ju0QDMyj8wcM1qY9N-jK6jrC7OefovfH9dvqOdu8Pr2sHjaZ4Vz0GbN5seS5YZRYY0utjbTlQhKmteCSWZOSZbbMueCkWmioykrIVObLUlAAPkV349wutB8DxF7t0y0-rVSsoIXkQuYkdcmxK50eYwCruuAaHU6KEnXWq8561ahXJb3qW6-SicxHMibCbyH8zv8P_QKgqIOh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919734780</pqid></control><display><type>article</type><title>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</title><source>Springer LINK 全文期刊数据库</source><source>ProQuest Central</source><creator>Jakeer, Shaik ; Reddy, S. R. R.</creator><creatorcontrib>Jakeer, Shaik ; Reddy, S. R. R.</creatorcontrib><description>The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-04118-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Cancer therapies ; Complex Systems ; Condensed Matter Physics ; Contraction ; Debye length ; Design ; Dimensional analysis ; Electric fields ; Engineering ; Exact solutions ; Flow rates ; Flow velocity ; Fluid flow ; Fluids ; Heat transfer ; Impact analysis ; Kinematics ; Ligands ; Lubricants & lubrication ; Mathematical analysis ; Mathematical and Computational Physics ; Medical research ; Membranes ; Molecular ; Nanofluids ; Nanoparticles ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Regular Article ; Shear stress ; Stream functions (fluids) ; Theoretical ; Velocity ; Wall shear stresses</subject><ispartof>European physical journal plus, 2023-06, Vol.138 (6), p.489, Article 489</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</citedby><cites>FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04118-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919734780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Jakeer, Shaik</creatorcontrib><creatorcontrib>Reddy, S. R. R.</creatorcontrib><title>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Cancer therapies</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Contraction</subject><subject>Debye length</subject><subject>Design</subject><subject>Dimensional analysis</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Impact analysis</subject><subject>Kinematics</subject><subject>Ligands</subject><subject>Lubricants & lubrication</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Medical research</subject><subject>Membranes</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Shear stress</subject><subject>Stream functions (fluids)</subject><subject>Theoretical</subject><subject>Velocity</subject><subject>Wall shear stresses</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LAzEQhoMoWGp_gwHPa_PVZvcopX5AwYueQzY7adPuZtdk19J_b-oKejOXvAPzzAwPQreU3FMqyBy6fTePlPMlyQjjGRGU5pm8QBNGC5IthBCXf_I1msW4J-mJgopCTFCzrsH0oT04D70zuIGmDNoD7oamc36Lbd0ecWvx7lQGV2GvfWvrISXnscafEBKla9w4E9p-KAEfXb_DO9A9ju0QDMyj8wcM1qY9N-jK6jrC7OefovfH9dvqOdu8Pr2sHjaZ4Vz0GbN5seS5YZRYY0utjbTlQhKmteCSWZOSZbbMueCkWmioykrIVObLUlAAPkV349wutB8DxF7t0y0-rVSsoIXkQuYkdcmxK50eYwCruuAaHU6KEnXWq8561ahXJb3qW6-SicxHMibCbyH8zv8P_QKgqIOh</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Jakeer, Shaik</creator><creator>Reddy, S. R. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230602</creationdate><title>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</title><author>Jakeer, Shaik ; Reddy, S. R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Cancer therapies</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Contraction</topic><topic>Debye length</topic><topic>Design</topic><topic>Dimensional analysis</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Impact analysis</topic><topic>Kinematics</topic><topic>Ligands</topic><topic>Lubricants & lubrication</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Medical research</topic><topic>Membranes</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Shear stress</topic><topic>Stream functions (fluids)</topic><topic>Theoretical</topic><topic>Velocity</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakeer, Shaik</creatorcontrib><creatorcontrib>Reddy, S. R. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakeer, Shaik</au><au>Reddy, S. R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-06-02</date><risdate>2023</risdate><volume>138</volume><issue>6</issue><spage>489</spage><pages>489-</pages><artnum>489</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-04118-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2023-06, Vol.138 (6), p.489, Article 489 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919734780 |
source | Springer LINK 全文期刊数据库; ProQuest Central |
subjects | Applied and Technical Physics Atomic Cancer therapies Complex Systems Condensed Matter Physics Contraction Debye length Design Dimensional analysis Electric fields Engineering Exact solutions Flow rates Flow velocity Fluid flow Fluids Heat transfer Impact analysis Kinematics Ligands Lubricants & lubrication Mathematical analysis Mathematical and Computational Physics Medical research Membranes Molecular Nanofluids Nanoparticles Optical and Plasma Physics Parameters Physics Physics and Astronomy Regular Article Shear stress Stream functions (fluids) Theoretical Velocity Wall shear stresses |
title | Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrokinetic%20membrane%20pumping%20flow%20of%20hybrid%20nanofluid%20in%20a%20vertical%20microtube%20with%20heat%20source/sink%20effect&rft.jtitle=European%20physical%20journal%20plus&rft.au=Jakeer,%20Shaik&rft.date=2023-06-02&rft.volume=138&rft.issue=6&rft.spage=489&rft.pages=489-&rft.artnum=489&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-04118-7&rft_dat=%3Cproquest_cross%3E2919734780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919734780&rft_id=info:pmid/&rfr_iscdi=true |