Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect

The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-06, Vol.138 (6), p.489, Article 489
Hauptverfasser: Jakeer, Shaik, Reddy, S. R. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 489
container_title European physical journal plus
container_volume 138
creator Jakeer, Shaik
Reddy, S. R. R.
description The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski.
doi_str_mv 10.1140/epjp/s13360-023-04118-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919734780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919734780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_gwHPa_PVZvcopX5AwYueQzY7adPuZtdk19J_b-oKejOXvAPzzAwPQreU3FMqyBy6fTePlPMlyQjjGRGU5pm8QBNGC5IthBCXf_I1msW4J-mJgopCTFCzrsH0oT04D70zuIGmDNoD7oamc36Lbd0ecWvx7lQGV2GvfWvrISXnscafEBKla9w4E9p-KAEfXb_DO9A9ju0QDMyj8wcM1qY9N-jK6jrC7OefovfH9dvqOdu8Pr2sHjaZ4Vz0GbN5seS5YZRYY0utjbTlQhKmteCSWZOSZbbMueCkWmioykrIVObLUlAAPkV349wutB8DxF7t0y0-rVSsoIXkQuYkdcmxK50eYwCruuAaHU6KEnXWq8561ahXJb3qW6-SicxHMibCbyH8zv8P_QKgqIOh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919734780</pqid></control><display><type>article</type><title>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</title><source>Springer LINK 全文期刊数据库</source><source>ProQuest Central</source><creator>Jakeer, Shaik ; Reddy, S. R. R.</creator><creatorcontrib>Jakeer, Shaik ; Reddy, S. R. R.</creatorcontrib><description>The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-04118-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Cancer therapies ; Complex Systems ; Condensed Matter Physics ; Contraction ; Debye length ; Design ; Dimensional analysis ; Electric fields ; Engineering ; Exact solutions ; Flow rates ; Flow velocity ; Fluid flow ; Fluids ; Heat transfer ; Impact analysis ; Kinematics ; Ligands ; Lubricants &amp; lubrication ; Mathematical analysis ; Mathematical and Computational Physics ; Medical research ; Membranes ; Molecular ; Nanofluids ; Nanoparticles ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Regular Article ; Shear stress ; Stream functions (fluids) ; Theoretical ; Velocity ; Wall shear stresses</subject><ispartof>European physical journal plus, 2023-06, Vol.138 (6), p.489, Article 489</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</citedby><cites>FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04118-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919734780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Jakeer, Shaik</creatorcontrib><creatorcontrib>Reddy, S. R. R.</creatorcontrib><title>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Cancer therapies</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Contraction</subject><subject>Debye length</subject><subject>Design</subject><subject>Dimensional analysis</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Impact analysis</subject><subject>Kinematics</subject><subject>Ligands</subject><subject>Lubricants &amp; lubrication</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Medical research</subject><subject>Membranes</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Shear stress</subject><subject>Stream functions (fluids)</subject><subject>Theoretical</subject><subject>Velocity</subject><subject>Wall shear stresses</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LAzEQhoMoWGp_gwHPa_PVZvcopX5AwYueQzY7adPuZtdk19J_b-oKejOXvAPzzAwPQreU3FMqyBy6fTePlPMlyQjjGRGU5pm8QBNGC5IthBCXf_I1msW4J-mJgopCTFCzrsH0oT04D70zuIGmDNoD7oamc36Lbd0ecWvx7lQGV2GvfWvrISXnscafEBKla9w4E9p-KAEfXb_DO9A9ju0QDMyj8wcM1qY9N-jK6jrC7OefovfH9dvqOdu8Pr2sHjaZ4Vz0GbN5seS5YZRYY0utjbTlQhKmteCSWZOSZbbMueCkWmioykrIVObLUlAAPkV349wutB8DxF7t0y0-rVSsoIXkQuYkdcmxK50eYwCruuAaHU6KEnXWq8561ahXJb3qW6-SicxHMibCbyH8zv8P_QKgqIOh</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Jakeer, Shaik</creator><creator>Reddy, S. R. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230602</creationdate><title>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</title><author>Jakeer, Shaik ; Reddy, S. R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2f89638c210fcfbaac7fb5702aa4372fc02af2fb83430d5aedbd47b8386b41ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Cancer therapies</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Contraction</topic><topic>Debye length</topic><topic>Design</topic><topic>Dimensional analysis</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Impact analysis</topic><topic>Kinematics</topic><topic>Ligands</topic><topic>Lubricants &amp; lubrication</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Medical research</topic><topic>Membranes</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Shear stress</topic><topic>Stream functions (fluids)</topic><topic>Theoretical</topic><topic>Velocity</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakeer, Shaik</creatorcontrib><creatorcontrib>Reddy, S. R. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakeer, Shaik</au><au>Reddy, S. R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-06-02</date><risdate>2023</risdate><volume>138</volume><issue>6</issue><spage>489</spage><pages>489-</pages><artnum>489</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The purpose of the present research is to create a pressure gradient for controlling fluid flow via a vertical microtube by examining the impact of heat transfer analysis on membrane propagation. In this situation, the membrane’s motion generates pressure, which is then further regulated by buoyancy forces. Throughout the contraction cycle, the wall-connected membrane goes through intermittent periods of compression and expansion. The fluid is moved by the micro-pump due to wall deformation and membrane kinematics. The analytical solutions have been derived using the dimensional analysis and lubrication technique, which has been further simulated by utilizing the MATLAB software for the graphical demonstrations. The influence of functioning parameters on axial velocity, transverse velocity, stream function, isotherms, pressure gradient, temperature, volumetric flow rate, wall shear stress, and Nusselt number is visually shown. The results show that the volumetric flow rate of Debye length increases with progression through the micro-tube, whereas the Helmholtz-Smoluchowski has the reverse effect. Streamlines cannot be smaller or larger with varying parameters throughout the contraction phase, but extreme contour outlines are calculated in the downward path throughout the expansion phase in Helmholtz-Smoluchowski.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-04118-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-06, Vol.138 (6), p.489, Article 489
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919734780
source Springer LINK 全文期刊数据库; ProQuest Central
subjects Applied and Technical Physics
Atomic
Cancer therapies
Complex Systems
Condensed Matter Physics
Contraction
Debye length
Design
Dimensional analysis
Electric fields
Engineering
Exact solutions
Flow rates
Flow velocity
Fluid flow
Fluids
Heat transfer
Impact analysis
Kinematics
Ligands
Lubricants & lubrication
Mathematical analysis
Mathematical and Computational Physics
Medical research
Membranes
Molecular
Nanofluids
Nanoparticles
Optical and Plasma Physics
Parameters
Physics
Physics and Astronomy
Regular Article
Shear stress
Stream functions (fluids)
Theoretical
Velocity
Wall shear stresses
title Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrokinetic%20membrane%20pumping%20flow%20of%20hybrid%20nanofluid%20in%20a%20vertical%20microtube%20with%20heat%20source/sink%20effect&rft.jtitle=European%20physical%20journal%20plus&rft.au=Jakeer,%20Shaik&rft.date=2023-06-02&rft.volume=138&rft.issue=6&rft.spage=489&rft.pages=489-&rft.artnum=489&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-04118-7&rft_dat=%3Cproquest_cross%3E2919734780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919734780&rft_id=info:pmid/&rfr_iscdi=true