InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model

In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2021-05, Vol.13 (5), p.1453-1459
Hauptverfasser: Dutta, Ritam, Subash, T. D., Paitya, Nitai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 5
container_start_page 1453
container_title SILICON
container_volume 13
creator Dutta, Ritam
Subash, T. D.
Paitya, Nitai
description In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V th as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I ON /I OFF ratio as 10 8 for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.
doi_str_mv 10.1007/s12633-020-00546-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919733498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919733498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYsoOOb-AZ8CPkeTps2Hb2PObTI_wAm-hTRNbUeXzCRD9t_braJv3pd7LpxzuPyS5BKja4wQuwk4pYRAlCKIUJ5RyE6SAeaMQiEwP_3V6P08GYWwRt2QlHEqBklY2HG4eW3A3ETjHXzYWR0bZ8GkVtaaFkQHprbT2oBYG_BifOX85ni7CtzN4Op-ugJfTazBzKttbawBT8o63xSFs7dAWTC2qt3HRqsWPLrStBfJWaXaYEY_e5i8dR2TOVw-zxaT8RJqgkWEuuAmTQmrSoJKmjOtqUirIie6EIwrRHGW45wZlVW4ynOONGfEkAyVSmeUczJMrvrerXefOxOiXLud754JMhVYMEIycXClvUt7F4I3ldz6ZqP8XmIkD3xlz1d2fOWRr2RdiPSh0Jnth_F_1f-kvgHtB3w9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919733498</pqid></control><display><type>article</type><title>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creator><creatorcontrib>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creatorcontrib><description>In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V th as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I ON /I OFF ratio as 10 8 for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-020-00546-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Electrons ; Energy gap ; Engineering ; Environmental Chemistry ; Field effect transistors ; Graphene ; Heterojunctions ; Indium ; Indium arsenides ; Inorganic Chemistry ; Lasers ; Materials Science ; Mathematical analysis ; Mathematical models ; Metals ; Nanoribbons ; Optical Devices ; Optics ; Original Paper ; Photonics ; Polymer Sciences ; Semiconductor devices ; Silicon ; Simulation ; Transistors ; Two dimensional analysis ; Two dimensional models</subject><ispartof>SILICON, 2021-05, Vol.13 (5), p.1453-1459</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</citedby><cites>FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-020-00546-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919733498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><title>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</title><title>SILICON</title><addtitle>Silicon</addtitle><description>In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V th as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I ON /I OFF ratio as 10 8 for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Engineering</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Heterojunctions</subject><subject>Indium</subject><subject>Indium arsenides</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Nanoribbons</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Transistors</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kN1LwzAUxYsoOOb-AZ8CPkeTps2Hb2PObTI_wAm-hTRNbUeXzCRD9t_braJv3pd7LpxzuPyS5BKja4wQuwk4pYRAlCKIUJ5RyE6SAeaMQiEwP_3V6P08GYWwRt2QlHEqBklY2HG4eW3A3ETjHXzYWR0bZ8GkVtaaFkQHprbT2oBYG_BifOX85ni7CtzN4Op-ugJfTazBzKttbawBT8o63xSFs7dAWTC2qt3HRqsWPLrStBfJWaXaYEY_e5i8dR2TOVw-zxaT8RJqgkWEuuAmTQmrSoJKmjOtqUirIie6EIwrRHGW45wZlVW4ynOONGfEkAyVSmeUczJMrvrerXefOxOiXLud754JMhVYMEIycXClvUt7F4I3ldz6ZqP8XmIkD3xlz1d2fOWRr2RdiPSh0Jnth_F_1f-kvgHtB3w9</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Dutta, Ritam</creator><creator>Subash, T. D.</creator><creator>Paitya, Nitai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210501</creationdate><title>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</title><author>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Engineering</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Heterojunctions</topic><topic>Indium</topic><topic>Indium arsenides</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Nanoribbons</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Transistors</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Ritam</au><au>Subash, T. D.</au><au>Paitya, Nitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><spage>1453</spage><epage>1459</epage><pages>1453-1459</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V th as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I ON /I OFF ratio as 10 8 for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-020-00546-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2021-05, Vol.13 (5), p.1453-1459
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2919733498
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Chemistry
Chemistry and Materials Science
Electrons
Energy gap
Engineering
Environmental Chemistry
Field effect transistors
Graphene
Heterojunctions
Indium
Indium arsenides
Inorganic Chemistry
Lasers
Materials Science
Mathematical analysis
Mathematical models
Metals
Nanoribbons
Optical Devices
Optics
Original Paper
Photonics
Polymer Sciences
Semiconductor devices
Silicon
Simulation
Transistors
Two dimensional analysis
Two dimensional models
title InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InAs/Si%20Hetero-Junction%20Channel%20to%20Enhance%20the%20Performance%20of%20DG-TFET%20with%20Graphene%20Nanoribbon:%20an%20Analytical%20Model&rft.jtitle=SILICON&rft.au=Dutta,%20Ritam&rft.date=2021-05-01&rft.volume=13&rft.issue=5&rft.spage=1453&rft.epage=1459&rft.pages=1453-1459&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-020-00546-7&rft_dat=%3Cproquest_cross%3E2919733498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919733498&rft_id=info:pmid/&rfr_iscdi=true