InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model
In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results bet...
Gespeichert in:
Veröffentlicht in: | SILICON 2021-05, Vol.13 (5), p.1453-1459 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1459 |
---|---|
container_issue | 5 |
container_start_page | 1453 |
container_title | SILICON |
container_volume | 13 |
creator | Dutta, Ritam Subash, T. D. Paitya, Nitai |
description | In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V
th
as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I
ON
/I
OFF
ratio as 10
8
for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data. |
doi_str_mv | 10.1007/s12633-020-00546-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919733498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919733498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYsoOOb-AZ8CPkeTps2Hb2PObTI_wAm-hTRNbUeXzCRD9t_braJv3pd7LpxzuPyS5BKja4wQuwk4pYRAlCKIUJ5RyE6SAeaMQiEwP_3V6P08GYWwRt2QlHEqBklY2HG4eW3A3ETjHXzYWR0bZ8GkVtaaFkQHprbT2oBYG_BifOX85ni7CtzN4Op-ugJfTazBzKttbawBT8o63xSFs7dAWTC2qt3HRqsWPLrStBfJWaXaYEY_e5i8dR2TOVw-zxaT8RJqgkWEuuAmTQmrSoJKmjOtqUirIie6EIwrRHGW45wZlVW4ynOONGfEkAyVSmeUczJMrvrerXefOxOiXLud754JMhVYMEIycXClvUt7F4I3ldz6ZqP8XmIkD3xlz1d2fOWRr2RdiPSh0Jnth_F_1f-kvgHtB3w9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919733498</pqid></control><display><type>article</type><title>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creator><creatorcontrib>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creatorcontrib><description>In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V
th
as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I
ON
/I
OFF
ratio as 10
8
for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-020-00546-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Electrons ; Energy gap ; Engineering ; Environmental Chemistry ; Field effect transistors ; Graphene ; Heterojunctions ; Indium ; Indium arsenides ; Inorganic Chemistry ; Lasers ; Materials Science ; Mathematical analysis ; Mathematical models ; Metals ; Nanoribbons ; Optical Devices ; Optics ; Original Paper ; Photonics ; Polymer Sciences ; Semiconductor devices ; Silicon ; Simulation ; Transistors ; Two dimensional analysis ; Two dimensional models</subject><ispartof>SILICON, 2021-05, Vol.13 (5), p.1453-1459</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</citedby><cites>FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-020-00546-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919733498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><title>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</title><title>SILICON</title><addtitle>Silicon</addtitle><description>In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V
th
as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I
ON
/I
OFF
ratio as 10
8
for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Engineering</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Heterojunctions</subject><subject>Indium</subject><subject>Indium arsenides</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Nanoribbons</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Transistors</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kN1LwzAUxYsoOOb-AZ8CPkeTps2Hb2PObTI_wAm-hTRNbUeXzCRD9t_braJv3pd7LpxzuPyS5BKja4wQuwk4pYRAlCKIUJ5RyE6SAeaMQiEwP_3V6P08GYWwRt2QlHEqBklY2HG4eW3A3ETjHXzYWR0bZ8GkVtaaFkQHprbT2oBYG_BifOX85ni7CtzN4Op-ugJfTazBzKttbawBT8o63xSFs7dAWTC2qt3HRqsWPLrStBfJWaXaYEY_e5i8dR2TOVw-zxaT8RJqgkWEuuAmTQmrSoJKmjOtqUirIie6EIwrRHGW45wZlVW4ynOONGfEkAyVSmeUczJMrvrerXefOxOiXLud754JMhVYMEIycXClvUt7F4I3ldz6ZqP8XmIkD3xlz1d2fOWRr2RdiPSh0Jnth_F_1f-kvgHtB3w9</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Dutta, Ritam</creator><creator>Subash, T. D.</creator><creator>Paitya, Nitai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210501</creationdate><title>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</title><author>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cb8e2237fd30d657cc692fb53cb978a06145157ea4f1f5580c873e340dac46883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Engineering</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Heterojunctions</topic><topic>Indium</topic><topic>Indium arsenides</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Nanoribbons</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Transistors</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Ritam</au><au>Subash, T. D.</au><au>Paitya, Nitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><spage>1453</spage><epage>1459</epage><pages>1453-1459</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source – channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V
th
as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I
ON
/I
OFF
ratio as 10
8
for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-020-00546-7</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2021-05, Vol.13 (5), p.1453-1459 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_2919733498 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Chemistry Chemistry and Materials Science Electrons Energy gap Engineering Environmental Chemistry Field effect transistors Graphene Heterojunctions Indium Indium arsenides Inorganic Chemistry Lasers Materials Science Mathematical analysis Mathematical models Metals Nanoribbons Optical Devices Optics Original Paper Photonics Polymer Sciences Semiconductor devices Silicon Simulation Transistors Two dimensional analysis Two dimensional models |
title | InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InAs/Si%20Hetero-Junction%20Channel%20to%20Enhance%20the%20Performance%20of%20DG-TFET%20with%20Graphene%20Nanoribbon:%20an%20Analytical%20Model&rft.jtitle=SILICON&rft.au=Dutta,%20Ritam&rft.date=2021-05-01&rft.volume=13&rft.issue=5&rft.spage=1453&rft.epage=1459&rft.pages=1453-1459&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-020-00546-7&rft_dat=%3Cproquest_cross%3E2919733498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919733498&rft_id=info:pmid/&rfr_iscdi=true |