A bipartite matching-based feature selection for multi-label learning

Many real-world data have multiple class labels known as multi-label data, where the labels are correlated with each other, and as such, they are not independent. Since these data are usually high-dimensional, and the current multi-label feature selection methods have not been precise enough, then a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2021-02, Vol.12 (2), p.459-475
Hauptverfasser: Hashemi, Amin, Dowlatshahi, Mohammad Bagher, Nezamabadi-Pour, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 2
container_start_page 459
container_title International journal of machine learning and cybernetics
container_volume 12
creator Hashemi, Amin
Dowlatshahi, Mohammad Bagher
Nezamabadi-Pour, Hossein
description Many real-world data have multiple class labels known as multi-label data, where the labels are correlated with each other, and as such, they are not independent. Since these data are usually high-dimensional, and the current multi-label feature selection methods have not been precise enough, then a new feature selection method is necessary. In this paper, for the first time, we have modeled the problem of multi-label feature selection to a bipartite graph matching process. The proposed method constructs a bipartite graph of features (as the left vertices) and labels (as the right vertices), called Feature-Label Graph (FLG), where each feature is connected to the set of labels, where the weight of the edge between each feature and label is equal to their correlation. Then, the Hungarian algorithm estimates the best matching in FLG. The selected features in each matching are sorted by weighted correlation distance and added to the ranking vector. To select the discriminative features, the proposed method considers both the redundancy of features and the relevancy of each feature to the class labels. The results indicate the superiority of the proposed method against the other methods in classification measures.
doi_str_mv 10.1007/s13042-020-01180-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919717338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919717338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a7383a1f8c13c61c5174060515b18a2bd619eb26e96bc3e5b1ce099c1b433403</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKeA5-jMZrubPZZStVDwouAtJOls3bLdrUmW4r83uqI35zLD8N684WPsGuEWAcq7gBLyTEAGAhAViNMZm6AqlFCgXs9_5xIv2SyEPaQqQErIJmy14LY5Gh-bSPxgontrup2wJtCW12Ti4IkHasnFpu943Xt-GNrYiNZYanlLxnfJcMUuatMGmv30KXu5Xz0vH8Xm6WG9XGyEk1hFkZtSKmmwVg6lK9DNsczTK3OcW1Qms9sCK7JZQVVhnaS0dQRV5dDmUuYgp-xmvHv0_ftAIep9P_guReqswqrEUqaAKctGlfN9CJ5qffTNwfgPjaC_iOmRmE7E9DcxfUomOZpCEnc78n-n_3F9AlSzbZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919717338</pqid></control><display><type>article</type><title>A bipartite matching-based feature selection for multi-label learning</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Hashemi, Amin ; Dowlatshahi, Mohammad Bagher ; Nezamabadi-Pour, Hossein</creator><creatorcontrib>Hashemi, Amin ; Dowlatshahi, Mohammad Bagher ; Nezamabadi-Pour, Hossein</creatorcontrib><description>Many real-world data have multiple class labels known as multi-label data, where the labels are correlated with each other, and as such, they are not independent. Since these data are usually high-dimensional, and the current multi-label feature selection methods have not been precise enough, then a new feature selection method is necessary. In this paper, for the first time, we have modeled the problem of multi-label feature selection to a bipartite graph matching process. The proposed method constructs a bipartite graph of features (as the left vertices) and labels (as the right vertices), called Feature-Label Graph (FLG), where each feature is connected to the set of labels, where the weight of the edge between each feature and label is equal to their correlation. Then, the Hungarian algorithm estimates the best matching in FLG. The selected features in each matching are sorted by weighted correlation distance and added to the ranking vector. To select the discriminative features, the proposed method considers both the redundancy of features and the relevancy of each feature to the class labels. The results indicate the superiority of the proposed method against the other methods in classification measures.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-020-01180-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Apexes ; Artificial Intelligence ; Classification ; Complex Systems ; Computational Intelligence ; Control ; Correlation ; Engineering ; Feature selection ; Graph matching ; Graph theory ; Labels ; Mechatronics ; Methods ; Optimization ; Original Article ; Pattern Recognition ; Power ; Redundancy ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2021-02, Vol.12 (2), p.459-475</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a7383a1f8c13c61c5174060515b18a2bd619eb26e96bc3e5b1ce099c1b433403</citedby><cites>FETCH-LOGICAL-c319t-4a7383a1f8c13c61c5174060515b18a2bd619eb26e96bc3e5b1ce099c1b433403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-020-01180-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919717338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Hashemi, Amin</creatorcontrib><creatorcontrib>Dowlatshahi, Mohammad Bagher</creatorcontrib><creatorcontrib>Nezamabadi-Pour, Hossein</creatorcontrib><title>A bipartite matching-based feature selection for multi-label learning</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Many real-world data have multiple class labels known as multi-label data, where the labels are correlated with each other, and as such, they are not independent. Since these data are usually high-dimensional, and the current multi-label feature selection methods have not been precise enough, then a new feature selection method is necessary. In this paper, for the first time, we have modeled the problem of multi-label feature selection to a bipartite graph matching process. The proposed method constructs a bipartite graph of features (as the left vertices) and labels (as the right vertices), called Feature-Label Graph (FLG), where each feature is connected to the set of labels, where the weight of the edge between each feature and label is equal to their correlation. Then, the Hungarian algorithm estimates the best matching in FLG. The selected features in each matching are sorted by weighted correlation distance and added to the ranking vector. To select the discriminative features, the proposed method considers both the redundancy of features and the relevancy of each feature to the class labels. The results indicate the superiority of the proposed method against the other methods in classification measures.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Correlation</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Graph matching</subject><subject>Graph theory</subject><subject>Labels</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Power</subject><subject>Redundancy</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLAzEQhYMoWGr_gKeA5-jMZrubPZZStVDwouAtJOls3bLdrUmW4r83uqI35zLD8N684WPsGuEWAcq7gBLyTEAGAhAViNMZm6AqlFCgXs9_5xIv2SyEPaQqQErIJmy14LY5Gh-bSPxgontrup2wJtCW12Ti4IkHasnFpu943Xt-GNrYiNZYanlLxnfJcMUuatMGmv30KXu5Xz0vH8Xm6WG9XGyEk1hFkZtSKmmwVg6lK9DNsczTK3OcW1Qms9sCK7JZQVVhnaS0dQRV5dDmUuYgp-xmvHv0_ftAIep9P_guReqswqrEUqaAKctGlfN9CJ5qffTNwfgPjaC_iOmRmE7E9DcxfUomOZpCEnc78n-n_3F9AlSzbZM</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hashemi, Amin</creator><creator>Dowlatshahi, Mohammad Bagher</creator><creator>Nezamabadi-Pour, Hossein</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210201</creationdate><title>A bipartite matching-based feature selection for multi-label learning</title><author>Hashemi, Amin ; Dowlatshahi, Mohammad Bagher ; Nezamabadi-Pour, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a7383a1f8c13c61c5174060515b18a2bd619eb26e96bc3e5b1ce099c1b433403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Correlation</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Graph matching</topic><topic>Graph theory</topic><topic>Labels</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Power</topic><topic>Redundancy</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, Amin</creatorcontrib><creatorcontrib>Dowlatshahi, Mohammad Bagher</creatorcontrib><creatorcontrib>Nezamabadi-Pour, Hossein</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemi, Amin</au><au>Dowlatshahi, Mohammad Bagher</au><au>Nezamabadi-Pour, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bipartite matching-based feature selection for multi-label learning</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>459</spage><epage>475</epage><pages>459-475</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Many real-world data have multiple class labels known as multi-label data, where the labels are correlated with each other, and as such, they are not independent. Since these data are usually high-dimensional, and the current multi-label feature selection methods have not been precise enough, then a new feature selection method is necessary. In this paper, for the first time, we have modeled the problem of multi-label feature selection to a bipartite graph matching process. The proposed method constructs a bipartite graph of features (as the left vertices) and labels (as the right vertices), called Feature-Label Graph (FLG), where each feature is connected to the set of labels, where the weight of the edge between each feature and label is equal to their correlation. Then, the Hungarian algorithm estimates the best matching in FLG. The selected features in each matching are sorted by weighted correlation distance and added to the ranking vector. To select the discriminative features, the proposed method considers both the redundancy of features and the relevancy of each feature to the class labels. The results indicate the superiority of the proposed method against the other methods in classification measures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-020-01180-w</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2021-02, Vol.12 (2), p.459-475
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919717338
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Apexes
Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Control
Correlation
Engineering
Feature selection
Graph matching
Graph theory
Labels
Mechatronics
Methods
Optimization
Original Article
Pattern Recognition
Power
Redundancy
Robotics
Systems Biology
title A bipartite matching-based feature selection for multi-label learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bipartite%20matching-based%20feature%20selection%20for%20multi-label%20learning&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Hashemi,%20Amin&rft.date=2021-02-01&rft.volume=12&rft.issue=2&rft.spage=459&rft.epage=475&rft.pages=459-475&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-020-01180-w&rft_dat=%3Cproquest_cross%3E2919717338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919717338&rft_id=info:pmid/&rfr_iscdi=true