Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus
A mathematical model of viral hepatitis B that takes into account healthy cells, infected cells and free viruses is studied in this paper. This model takes into account spatial mobility of all the three populations group mentioned and also drug treatment, the Rough-Hurwitz criteria are used to deter...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2023-11, Vol.138 (11), p.971, Article 971 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 971 |
container_title | European physical journal plus |
container_volume | 138 |
creator | Mbopda, B. Tamko Issa, S. Guiem, R. Noutchie, S. C. Oukouomi Ekobena, H. P. |
description | A mathematical model of viral hepatitis B that takes into account healthy cells, infected cells and free viruses is studied in this paper. This model takes into account spatial mobility of all the three populations group mentioned and also drug treatment, the Rough-Hurwitz criteria are used to determine the stability conditions of this model. The traveling wave solutions are obtained by the exp(
-
Φ
(
ξ
)
)
- expansion method in order to better appreciate the mechanism of infection by the hepatitis B virus and we obtain the bright, dark type profiles and show the effects of drug treatment on the amplitude of the solutions which, allows us to give more information on the treatment and control of the disease, we found that an increase in the dose of drug treatment promotes the development of healthy cells but that this increase significantly reduces the density of the viral population. Numerical simulations are carried out to verify the analytical predictions. |
doi_str_mv | 10.1140/epjp/s13360-023-04534-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919716898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919716898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-863d07f47fbdb6fc4dc9f5e26a66c7a37dbfc3cb0a8d3db3b55d45e9da8e49a23</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOOb-BgM-R5MmTZtHHX7BQIT5HNJ8bBldU5N24n9vZgV9877cw-Wcc-EHwCXB14QwfGP7XX-TCKUcI1xQhFlJGRInYFYQgVHJGDv9o8_BIqUdzsMEYYLNwOs6qoNtW99t4EdWCQYHFexCl09WRRit0oMPHTLeuTFlBffB2PboG7YWbm2vBj_4BO_gwccxXYAzp9pkFz97Dt4e7tfLJ7R6eXxe3q6QppQNqObU4MqxyjWm4U4zo4UrbcEV57pStDKN01Q3WNWGmoY2ZWlYaYVRtWVCFXQOrqbePob30aZB7sIYu_xSFoKIivBa1NlVTS4dQ0rROtlHv1fxUxIsjwjlEaGcEMqMUH4jlCIn6ymZcqLb2Pjb_1_0C3B9eXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919716898</pqid></control><display><type>article</type><title>Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Mbopda, B. Tamko ; Issa, S. ; Guiem, R. ; Noutchie, S. C. Oukouomi ; Ekobena, H. P.</creator><creatorcontrib>Mbopda, B. Tamko ; Issa, S. ; Guiem, R. ; Noutchie, S. C. Oukouomi ; Ekobena, H. P.</creatorcontrib><description>A mathematical model of viral hepatitis B that takes into account healthy cells, infected cells and free viruses is studied in this paper. This model takes into account spatial mobility of all the three populations group mentioned and also drug treatment, the Rough-Hurwitz criteria are used to determine the stability conditions of this model. The traveling wave solutions are obtained by the exp(
-
Φ
(
ξ
)
)
- expansion method in order to better appreciate the mechanism of infection by the hepatitis B virus and we obtain the bright, dark type profiles and show the effects of drug treatment on the amplitude of the solutions which, allows us to give more information on the treatment and control of the disease, we found that an increase in the dose of drug treatment promotes the development of healthy cells but that this increase significantly reduces the density of the viral population. Numerical simulations are carried out to verify the analytical predictions.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-04534-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Cytotoxicity ; Disease control ; Drugs ; Health care ; Hepatitis ; Hepatitis B ; Infections ; Infectious diseases ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Reaction-diffusion equations ; Regular Article ; Theoretical ; Traveling waves ; Viral infections ; Viruses</subject><ispartof>European physical journal plus, 2023-11, Vol.138 (11), p.971, Article 971</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-863d07f47fbdb6fc4dc9f5e26a66c7a37dbfc3cb0a8d3db3b55d45e9da8e49a23</citedby><cites>FETCH-LOGICAL-c334t-863d07f47fbdb6fc4dc9f5e26a66c7a37dbfc3cb0a8d3db3b55d45e9da8e49a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04534-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919716898?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Mbopda, B. Tamko</creatorcontrib><creatorcontrib>Issa, S.</creatorcontrib><creatorcontrib>Guiem, R.</creatorcontrib><creatorcontrib>Noutchie, S. C. Oukouomi</creatorcontrib><creatorcontrib>Ekobena, H. P.</creatorcontrib><title>Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>A mathematical model of viral hepatitis B that takes into account healthy cells, infected cells and free viruses is studied in this paper. This model takes into account spatial mobility of all the three populations group mentioned and also drug treatment, the Rough-Hurwitz criteria are used to determine the stability conditions of this model. The traveling wave solutions are obtained by the exp(
-
Φ
(
ξ
)
)
- expansion method in order to better appreciate the mechanism of infection by the hepatitis B virus and we obtain the bright, dark type profiles and show the effects of drug treatment on the amplitude of the solutions which, allows us to give more information on the treatment and control of the disease, we found that an increase in the dose of drug treatment promotes the development of healthy cells but that this increase significantly reduces the density of the viral population. Numerical simulations are carried out to verify the analytical predictions.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cytotoxicity</subject><subject>Disease control</subject><subject>Drugs</subject><subject>Health care</subject><subject>Hepatitis</subject><subject>Hepatitis B</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reaction-diffusion equations</subject><subject>Regular Article</subject><subject>Theoretical</subject><subject>Traveling waves</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkN1LwzAUxYMoOOb-BgM-R5MmTZtHHX7BQIT5HNJ8bBldU5N24n9vZgV9877cw-Wcc-EHwCXB14QwfGP7XX-TCKUcI1xQhFlJGRInYFYQgVHJGDv9o8_BIqUdzsMEYYLNwOs6qoNtW99t4EdWCQYHFexCl09WRRit0oMPHTLeuTFlBffB2PboG7YWbm2vBj_4BO_gwccxXYAzp9pkFz97Dt4e7tfLJ7R6eXxe3q6QppQNqObU4MqxyjWm4U4zo4UrbcEV57pStDKN01Q3WNWGmoY2ZWlYaYVRtWVCFXQOrqbePob30aZB7sIYu_xSFoKIivBa1NlVTS4dQ0rROtlHv1fxUxIsjwjlEaGcEMqMUH4jlCIn6ymZcqLb2Pjb_1_0C3B9eXI</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Mbopda, B. Tamko</creator><creator>Issa, S.</creator><creator>Guiem, R.</creator><creator>Noutchie, S. C. Oukouomi</creator><creator>Ekobena, H. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231102</creationdate><title>Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus</title><author>Mbopda, B. Tamko ; Issa, S. ; Guiem, R. ; Noutchie, S. C. Oukouomi ; Ekobena, H. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-863d07f47fbdb6fc4dc9f5e26a66c7a37dbfc3cb0a8d3db3b55d45e9da8e49a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cytotoxicity</topic><topic>Disease control</topic><topic>Drugs</topic><topic>Health care</topic><topic>Hepatitis</topic><topic>Hepatitis B</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reaction-diffusion equations</topic><topic>Regular Article</topic><topic>Theoretical</topic><topic>Traveling waves</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mbopda, B. Tamko</creatorcontrib><creatorcontrib>Issa, S.</creatorcontrib><creatorcontrib>Guiem, R.</creatorcontrib><creatorcontrib>Noutchie, S. C. Oukouomi</creatorcontrib><creatorcontrib>Ekobena, H. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mbopda, B. Tamko</au><au>Issa, S.</au><au>Guiem, R.</au><au>Noutchie, S. C. Oukouomi</au><au>Ekobena, H. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-11-02</date><risdate>2023</risdate><volume>138</volume><issue>11</issue><spage>971</spage><pages>971-</pages><artnum>971</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>A mathematical model of viral hepatitis B that takes into account healthy cells, infected cells and free viruses is studied in this paper. This model takes into account spatial mobility of all the three populations group mentioned and also drug treatment, the Rough-Hurwitz criteria are used to determine the stability conditions of this model. The traveling wave solutions are obtained by the exp(
-
Φ
(
ξ
)
)
- expansion method in order to better appreciate the mechanism of infection by the hepatitis B virus and we obtain the bright, dark type profiles and show the effects of drug treatment on the amplitude of the solutions which, allows us to give more information on the treatment and control of the disease, we found that an increase in the dose of drug treatment promotes the development of healthy cells but that this increase significantly reduces the density of the viral population. Numerical simulations are carried out to verify the analytical predictions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-04534-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2023-11, Vol.138 (11), p.971, Article 971 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919716898 |
source | SpringerLink Journals; ProQuest Central |
subjects | Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Cytotoxicity Disease control Drugs Health care Hepatitis Hepatitis B Infections Infectious diseases Mathematical and Computational Physics Mathematical models Molecular Optical and Plasma Physics Physics Physics and Astronomy Reaction-diffusion equations Regular Article Theoretical Traveling waves Viral infections Viruses |
title | Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travelling%20waves%20of%20a%20nonlinear%20reaction-diffusion%20model%20of%20the%20hepatitis%20B%20virus&rft.jtitle=European%20physical%20journal%20plus&rft.au=Mbopda,%20B.%20Tamko&rft.date=2023-11-02&rft.volume=138&rft.issue=11&rft.spage=971&rft.pages=971-&rft.artnum=971&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-04534-9&rft_dat=%3Cproquest_cross%3E2919716898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919716898&rft_id=info:pmid/&rfr_iscdi=true |