An adaptive graph sampling framework for graph analytics
In large-scale data processing, graph analytics of complex interaction networks are indispensable. As the whole graph processing and analytics can be inefficient and usually impractical, graph sampling by keeping a portion of the original graph becomes a favorable approach. While prior work focused...
Gespeichert in:
Veröffentlicht in: | Social Network Analysis and Mining 2023-12, Vol.14 (1), p.4, Article 4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 4 |
container_title | Social Network Analysis and Mining |
container_volume | 14 |
creator | Wang, Kewen |
description | In large-scale data processing, graph analytics of complex interaction networks are indispensable. As the whole graph processing and analytics can be inefficient and usually impractical, graph sampling by keeping a portion of the original graph becomes a favorable approach. While prior work focused on fixed edge and node selection strategy based on predetermined criteria, without adaptive feedback to adjust the sampling process, this type of sampling algorithms has limited flexibility and estimation accuracy for complex graphs. In this paper, we propose an adaptive graph sampling framework, and design AdapES, an adaptive edge sampling algorithm based on this framework. Compared to non-adaptive sampling methods, our approach can continually monitor the difference between the current sampled subgraph and the original graph, and dynamically adjust the edge sampling probability based on this observed sampling difference. Guided by a preset sampling goal, this algorithm automatically adapts to the fluctuations in the random sampling process with high flexibility. The experimental evaluation in 11 datasets demonstrates that AdapES outperforms other algorithms for preserving various graph properties and statistics. |
doi_str_mv | 10.1007/s13278-023-01157-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919712941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919712941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f96e051ae832f4ac5b051bfe097114d5510b5e6dfa77e20ef63310f426f137643</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EElXpH-AUibNh18_4WFW8pEpc4Gw5iV1SkibYKbT_nkB64LSzmtFo9BFyjXCLAPouIWc6p8A4BUSp6eGMzDBXhkqhzPk_fUkWKW0BAIFzA2pG8uUuc5Xrh_rLZ5vo-vcsubZv6t0mC9G1_ruLH1no4sl0O9cch7pMV-QiuCb5xenOydvD_evqia5fHp9XyzUtmYaBBqM8SHQ-5ywIV8pi_IrgwWhEUUmJUEivquC09gx8UJwjBMFUQK6V4HNyM_X2sfvc-zTYbbeP44pkmcGxhRmBY4pNqTJ2KUUfbB_r1sWjRbC_kOwEyY6Q7B8ke-A_ebhY_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919712941</pqid></control><display><type>article</type><title>An adaptive graph sampling framework for graph analytics</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>SpringerNature Journals</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Wang, Kewen</creator><creatorcontrib>Wang, Kewen</creatorcontrib><description>In large-scale data processing, graph analytics of complex interaction networks are indispensable. As the whole graph processing and analytics can be inefficient and usually impractical, graph sampling by keeping a portion of the original graph becomes a favorable approach. While prior work focused on fixed edge and node selection strategy based on predetermined criteria, without adaptive feedback to adjust the sampling process, this type of sampling algorithms has limited flexibility and estimation accuracy for complex graphs. In this paper, we propose an adaptive graph sampling framework, and design AdapES, an adaptive edge sampling algorithm based on this framework. Compared to non-adaptive sampling methods, our approach can continually monitor the difference between the current sampled subgraph and the original graph, and dynamically adjust the edge sampling probability based on this observed sampling difference. Guided by a preset sampling goal, this algorithm automatically adapts to the fluctuations in the random sampling process with high flexibility. The experimental evaluation in 11 datasets demonstrates that AdapES outperforms other algorithms for preserving various graph properties and statistics.</description><identifier>ISSN: 1869-5469</identifier><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-023-01157-x</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Adaptive algorithms ; Adaptive sampling ; Algorithms ; Data processing ; Flexibility ; Frame analysis ; Graph representations ; Graph theory ; Graphs ; Mathematical analysis ; Methods ; Random sampling ; Sample size ; Sampling methods</subject><ispartof>Social Network Analysis and Mining, 2023-12, Vol.14 (1), p.4, Article 4</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f96e051ae832f4ac5b051bfe097114d5510b5e6dfa77e20ef63310f426f137643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919712941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,43659,43787,43805,43953,44067,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Wang, Kewen</creatorcontrib><title>An adaptive graph sampling framework for graph analytics</title><title>Social Network Analysis and Mining</title><description>In large-scale data processing, graph analytics of complex interaction networks are indispensable. As the whole graph processing and analytics can be inefficient and usually impractical, graph sampling by keeping a portion of the original graph becomes a favorable approach. While prior work focused on fixed edge and node selection strategy based on predetermined criteria, without adaptive feedback to adjust the sampling process, this type of sampling algorithms has limited flexibility and estimation accuracy for complex graphs. In this paper, we propose an adaptive graph sampling framework, and design AdapES, an adaptive edge sampling algorithm based on this framework. Compared to non-adaptive sampling methods, our approach can continually monitor the difference between the current sampled subgraph and the original graph, and dynamically adjust the edge sampling probability based on this observed sampling difference. Guided by a preset sampling goal, this algorithm automatically adapts to the fluctuations in the random sampling process with high flexibility. The experimental evaluation in 11 datasets demonstrates that AdapES outperforms other algorithms for preserving various graph properties and statistics.</description><subject>Adaptive algorithms</subject><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Data processing</subject><subject>Flexibility</subject><subject>Frame analysis</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Random sampling</subject><subject>Sample size</subject><subject>Sampling methods</subject><issn>1869-5469</issn><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkEtPwzAQhC0EElXpH-AUibNh18_4WFW8pEpc4Gw5iV1SkibYKbT_nkB64LSzmtFo9BFyjXCLAPouIWc6p8A4BUSp6eGMzDBXhkqhzPk_fUkWKW0BAIFzA2pG8uUuc5Xrh_rLZ5vo-vcsubZv6t0mC9G1_ruLH1no4sl0O9cch7pMV-QiuCb5xenOydvD_evqia5fHp9XyzUtmYaBBqM8SHQ-5ywIV8pi_IrgwWhEUUmJUEivquC09gx8UJwjBMFUQK6V4HNyM_X2sfvc-zTYbbeP44pkmcGxhRmBY4pNqTJ2KUUfbB_r1sWjRbC_kOwEyY6Q7B8ke-A_ebhY_A</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Wang, Kewen</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20231206</creationdate><title>An adaptive graph sampling framework for graph analytics</title><author>Wang, Kewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f96e051ae832f4ac5b051bfe097114d5510b5e6dfa77e20ef63310f426f137643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Data processing</topic><topic>Flexibility</topic><topic>Frame analysis</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Random sampling</topic><topic>Sample size</topic><topic>Sampling methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kewen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social Network Analysis and Mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive graph sampling framework for graph analytics</atitle><jtitle>Social Network Analysis and Mining</jtitle><date>2023-12-06</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4</spage><pages>4-</pages><artnum>4</artnum><issn>1869-5469</issn><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>In large-scale data processing, graph analytics of complex interaction networks are indispensable. As the whole graph processing and analytics can be inefficient and usually impractical, graph sampling by keeping a portion of the original graph becomes a favorable approach. While prior work focused on fixed edge and node selection strategy based on predetermined criteria, without adaptive feedback to adjust the sampling process, this type of sampling algorithms has limited flexibility and estimation accuracy for complex graphs. In this paper, we propose an adaptive graph sampling framework, and design AdapES, an adaptive edge sampling algorithm based on this framework. Compared to non-adaptive sampling methods, our approach can continually monitor the difference between the current sampled subgraph and the original graph, and dynamically adjust the edge sampling probability based on this observed sampling difference. Guided by a preset sampling goal, this algorithm automatically adapts to the fluctuations in the random sampling process with high flexibility. The experimental evaluation in 11 datasets demonstrates that AdapES outperforms other algorithms for preserving various graph properties and statistics.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13278-023-01157-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5469 |
ispartof | Social Network Analysis and Mining, 2023-12, Vol.14 (1), p.4, Article 4 |
issn | 1869-5469 1869-5450 1869-5469 |
language | eng |
recordid | cdi_proquest_journals_2919712941 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; SpringerNature Journals; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Adaptive algorithms Adaptive sampling Algorithms Data processing Flexibility Frame analysis Graph representations Graph theory Graphs Mathematical analysis Methods Random sampling Sample size Sampling methods |
title | An adaptive graph sampling framework for graph analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20graph%20sampling%20framework%20for%20graph%20analytics&rft.jtitle=Social%20Network%20Analysis%20and%20Mining&rft.au=Wang,%20Kewen&rft.date=2023-12-06&rft.volume=14&rft.issue=1&rft.spage=4&rft.pages=4-&rft.artnum=4&rft.issn=1869-5469&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-023-01157-x&rft_dat=%3Cproquest_cross%3E2919712941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919712941&rft_id=info:pmid/&rfr_iscdi=true |