Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation

The contributions to the anomalous magnetic moment of the lepton L ( L = e μ or τ ) generated by a specific class of QED diagrams are evaluated analytically up to the eighth order of the electromagnetic coupling constant. The considered class of the Feynman diagrams involves the vacuum polarization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-03, Vol.138 (3), p.212, Article 212
Hauptverfasser: Solovtsova, O. P., Lashkevich, V. I., Kaptari, L. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 212
container_title European physical journal plus
container_volume 138
creator Solovtsova, O. P.
Lashkevich, V. I.
Kaptari, L. P.
description The contributions to the anomalous magnetic moment of the lepton L ( L = e μ or τ ) generated by a specific class of QED diagrams are evaluated analytically up to the eighth order of the electromagnetic coupling constant. The considered class of the Feynman diagrams involves the vacuum polarization insertions into the electromagnetic vertex of the lepton L up to three closed lepton loops. The corresponding analytical expressions are obtained as functions of the mass ratios r = m l / m L in the whole region 0 < r < ∞ . Our consideration is based on a combined use of the dispersion relations for the polarization operators and the Mellin–Barnes integral transform for the Feynman parametric integrals. This method is widely used in the literature in multi-loop calculations in relativistic quantum field theories. For each order of the radiative correction, we derive analytical expressions as functions of r , separately at r < 1 and r > 1 . We argue that in spite of the obtained explicit expressions in these intervals which are quite different, at first glance, they represent two branches of the same analytical function. Consequently, for each order of corrections there is a unique analytical function defined in the whole range of  r ∈ ( 0 , ∞ ) . The results of numerical calculations of the fourth-, sixth- and eighth-order corrections to the anomalous magnetic moments of leptons ( L = e , μ , τ ) with all possible vacuum polarization insertions are represented as functions of the ratio r = m l / m L . Whenever pertinent, we compare our analytical expressions and the corresponding asymptotical expansions with the known results available in the literature.
doi_str_mv 10.1140/epjp/s13360-023-03834-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919654772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919654772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3d61df3a51c6bf9b86ebf05977e88ef8705c71033f38e74b0c0a3ffa505b12143</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EElXpGbDEOtSOnThZQik_UhBCgrXlpOPWVeIEOwGVFXfghpyEpEGCHbOZWXzvG-khdErJOaWczKHZNnNPGYtJQEIWEJYwHvADNAlpSoKIc3745z5GM--3pB-eUp7yCbIZNG1tsbJ1pcod1q6u8OPyCq-MWjtVefxm2g1-VUXXVbipS-XMu2pNjxjrwQ3XmDEWtxvA91CWxn59fF4qZ8FjB40DD7bdQyfoSKvSw-xnT9Hz9fJpcRtkDzd3i4ssKBjjbcBWMV1ppiJaxLlO8ySGXJMoFQKSBHQiSFQIShjTLAHBc1IQxbRWEYlyGlLOpuhs7G1c_dKBb-W27pztX8owpWkccSHCPiXGVOFq7x1o2ThTKbeTlMjBrxz8ytGv7P3KvV859Ccj6XvCrsH99v-HfgMOGoSK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919654772</pqid></control><display><type>article</type><title>Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Solovtsova, O. P. ; Lashkevich, V. I. ; Kaptari, L. P.</creator><creatorcontrib>Solovtsova, O. P. ; Lashkevich, V. I. ; Kaptari, L. P.</creatorcontrib><description>The contributions to the anomalous magnetic moment of the lepton L ( L = e μ or τ ) generated by a specific class of QED diagrams are evaluated analytically up to the eighth order of the electromagnetic coupling constant. The considered class of the Feynman diagrams involves the vacuum polarization insertions into the electromagnetic vertex of the lepton L up to three closed lepton loops. The corresponding analytical expressions are obtained as functions of the mass ratios r = m l / m L in the whole region 0 &lt; r &lt; ∞ . Our consideration is based on a combined use of the dispersion relations for the polarization operators and the Mellin–Barnes integral transform for the Feynman parametric integrals. This method is widely used in the literature in multi-loop calculations in relativistic quantum field theories. For each order of the radiative correction, we derive analytical expressions as functions of r , separately at r &lt; 1 and r &gt; 1 . We argue that in spite of the obtained explicit expressions in these intervals which are quite different, at first glance, they represent two branches of the same analytical function. Consequently, for each order of corrections there is a unique analytical function defined in the whole range of  r ∈ ( 0 , ∞ ) . The results of numerical calculations of the fourth-, sixth- and eighth-order corrections to the anomalous magnetic moments of leptons ( L = e , μ , τ ) with all possible vacuum polarization insertions are represented as functions of the ratio r = m l / m L . Whenever pertinent, we compare our analytical expressions and the corresponding asymptotical expansions with the known results available in the literature.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-03834-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Applied and Technical Physics ; Asymptotic series ; Atomic ; Complex Systems ; Condensed Matter Physics ; Electromagnetic coupling ; Exact solutions ; Feynman diagrams ; Integral transforms ; Leptons ; Magnetic fields ; Magnetic moments ; Mass ratios ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Numerical analysis ; Operators (mathematics) ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Polarization ; Quantum electrodynamics ; Quantum theory ; Regular Article ; Relativistic theory ; Theoretical</subject><ispartof>European physical journal plus, 2023-03, Vol.138 (3), p.212, Article 212</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3d61df3a51c6bf9b86ebf05977e88ef8705c71033f38e74b0c0a3ffa505b12143</citedby><cites>FETCH-LOGICAL-c334t-3d61df3a51c6bf9b86ebf05977e88ef8705c71033f38e74b0c0a3ffa505b12143</cites><orcidid>0000-0002-4153-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-03834-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919654772?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Solovtsova, O. P.</creatorcontrib><creatorcontrib>Lashkevich, V. I.</creatorcontrib><creatorcontrib>Kaptari, L. P.</creatorcontrib><title>Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The contributions to the anomalous magnetic moment of the lepton L ( L = e μ or τ ) generated by a specific class of QED diagrams are evaluated analytically up to the eighth order of the electromagnetic coupling constant. The considered class of the Feynman diagrams involves the vacuum polarization insertions into the electromagnetic vertex of the lepton L up to three closed lepton loops. The corresponding analytical expressions are obtained as functions of the mass ratios r = m l / m L in the whole region 0 &lt; r &lt; ∞ . Our consideration is based on a combined use of the dispersion relations for the polarization operators and the Mellin–Barnes integral transform for the Feynman parametric integrals. This method is widely used in the literature in multi-loop calculations in relativistic quantum field theories. For each order of the radiative correction, we derive analytical expressions as functions of r , separately at r &lt; 1 and r &gt; 1 . We argue that in spite of the obtained explicit expressions in these intervals which are quite different, at first glance, they represent two branches of the same analytical function. Consequently, for each order of corrections there is a unique analytical function defined in the whole range of  r ∈ ( 0 , ∞ ) . The results of numerical calculations of the fourth-, sixth- and eighth-order corrections to the anomalous magnetic moments of leptons ( L = e , μ , τ ) with all possible vacuum polarization insertions are represented as functions of the ratio r = m l / m L . Whenever pertinent, we compare our analytical expressions and the corresponding asymptotical expansions with the known results available in the literature.</description><subject>Accuracy</subject><subject>Applied and Technical Physics</subject><subject>Asymptotic series</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electromagnetic coupling</subject><subject>Exact solutions</subject><subject>Feynman diagrams</subject><subject>Integral transforms</subject><subject>Leptons</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>Mass ratios</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Numerical analysis</subject><subject>Operators (mathematics)</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Quantum electrodynamics</subject><subject>Quantum theory</subject><subject>Regular Article</subject><subject>Relativistic theory</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1OwzAQRi0EElXpGbDEOtSOnThZQik_UhBCgrXlpOPWVeIEOwGVFXfghpyEpEGCHbOZWXzvG-khdErJOaWczKHZNnNPGYtJQEIWEJYwHvADNAlpSoKIc3745z5GM--3pB-eUp7yCbIZNG1tsbJ1pcod1q6u8OPyCq-MWjtVefxm2g1-VUXXVbipS-XMu2pNjxjrwQ3XmDEWtxvA91CWxn59fF4qZ8FjB40DD7bdQyfoSKvSw-xnT9Hz9fJpcRtkDzd3i4ssKBjjbcBWMV1ppiJaxLlO8ySGXJMoFQKSBHQiSFQIShjTLAHBc1IQxbRWEYlyGlLOpuhs7G1c_dKBb-W27pztX8owpWkccSHCPiXGVOFq7x1o2ThTKbeTlMjBrxz8ytGv7P3KvV859Ccj6XvCrsH99v-HfgMOGoSK</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Solovtsova, O. P.</creator><creator>Lashkevich, V. I.</creator><creator>Kaptari, L. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4153-4207</orcidid></search><sort><creationdate>20230306</creationdate><title>Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation</title><author>Solovtsova, O. P. ; Lashkevich, V. I. ; Kaptari, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3d61df3a51c6bf9b86ebf05977e88ef8705c71033f38e74b0c0a3ffa505b12143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Applied and Technical Physics</topic><topic>Asymptotic series</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electromagnetic coupling</topic><topic>Exact solutions</topic><topic>Feynman diagrams</topic><topic>Integral transforms</topic><topic>Leptons</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>Mass ratios</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Numerical analysis</topic><topic>Operators (mathematics)</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Quantum electrodynamics</topic><topic>Quantum theory</topic><topic>Regular Article</topic><topic>Relativistic theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovtsova, O. P.</creatorcontrib><creatorcontrib>Lashkevich, V. I.</creatorcontrib><creatorcontrib>Kaptari, L. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovtsova, O. P.</au><au>Lashkevich, V. I.</au><au>Kaptari, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-03-06</date><risdate>2023</risdate><volume>138</volume><issue>3</issue><spage>212</spage><pages>212-</pages><artnum>212</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The contributions to the anomalous magnetic moment of the lepton L ( L = e μ or τ ) generated by a specific class of QED diagrams are evaluated analytically up to the eighth order of the electromagnetic coupling constant. The considered class of the Feynman diagrams involves the vacuum polarization insertions into the electromagnetic vertex of the lepton L up to three closed lepton loops. The corresponding analytical expressions are obtained as functions of the mass ratios r = m l / m L in the whole region 0 &lt; r &lt; ∞ . Our consideration is based on a combined use of the dispersion relations for the polarization operators and the Mellin–Barnes integral transform for the Feynman parametric integrals. This method is widely used in the literature in multi-loop calculations in relativistic quantum field theories. For each order of the radiative correction, we derive analytical expressions as functions of r , separately at r &lt; 1 and r &gt; 1 . We argue that in spite of the obtained explicit expressions in these intervals which are quite different, at first glance, they represent two branches of the same analytical function. Consequently, for each order of corrections there is a unique analytical function defined in the whole range of  r ∈ ( 0 , ∞ ) . The results of numerical calculations of the fourth-, sixth- and eighth-order corrections to the anomalous magnetic moments of leptons ( L = e , μ , τ ) with all possible vacuum polarization insertions are represented as functions of the ratio r = m l / m L . Whenever pertinent, we compare our analytical expressions and the corresponding asymptotical expansions with the known results available in the literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-03834-4</doi><orcidid>https://orcid.org/0000-0002-4153-4207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-03, Vol.138 (3), p.212, Article 212
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919654772
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Applied and Technical Physics
Asymptotic series
Atomic
Complex Systems
Condensed Matter Physics
Electromagnetic coupling
Exact solutions
Feynman diagrams
Integral transforms
Leptons
Magnetic fields
Magnetic moments
Mass ratios
Mathematical analysis
Mathematical and Computational Physics
Molecular
Numerical analysis
Operators (mathematics)
Optical and Plasma Physics
Physics
Physics and Astronomy
Polarization
Quantum electrodynamics
Quantum theory
Regular Article
Relativistic theory
Theoretical
title Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lepton%20anomaly%20from%20QED%20diagrams%20with%20vacuum%20polarization%20insertions%20within%20the%20Mellin%E2%80%93Barnes%20representation&rft.jtitle=European%20physical%20journal%20plus&rft.au=Solovtsova,%20O.%20P.&rft.date=2023-03-06&rft.volume=138&rft.issue=3&rft.spage=212&rft.pages=212-&rft.artnum=212&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-03834-4&rft_dat=%3Cproquest_cross%3E2919654772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919654772&rft_id=info:pmid/&rfr_iscdi=true