The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands

Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermitten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wetlands (Wilmington, N.C.) N.C.), 2011-12, Vol.31 (6), p.1023-1032
Hauptverfasser: Mander, Ülo, Maddison, Martin, Soosaar, Kaido, Karabelnik, Kristjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1032
container_issue 6
container_start_page 1023
container_title Wetlands (Wilmington, N.C.)
container_volume 31
creator Mander, Ülo
Maddison, Martin
Soosaar, Kaido
Karabelnik, Kristjan
description Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N 2 O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO 2 and CH 4 fluxes. The lower water depths in Paistu resulted in higher CO 2 and N 2 O, and lower CH 4 emissions relative to other systems.
doi_str_mv 10.1007/s13157-011-0218-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919639990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919639990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c1ujlL6IRT0UOkxpNmk3bLdtEn20P56U1bw5GkG5n3egQehZyCvQEj5FoBBUWYEICMUquxyg0YgcpZxmvNbNCK0LLOCAr1HDyHsCQFOKYzQabUz-ONwVDpiZ_FX34am2-LFufauddszVl2NZ22vY6_i9bJW0Xi8UpvWYNfhuTem27k-GDxXAU8PTQiN6wK23h3wJG3RJ9jUeG1im8rCI7qzqg3m6XeO0fdsupossuXn_GPyvswUYyJmilKrCVc10doWhDMFQuucK1GVLIeK5KKoN5YxXoOwnJWVtYptSq2V5UWVszF6GXqP3p16E6Lcu9536aWkAgRnQgiSUjCktHcheGPl0TcH5c8SiLyalYNZmczKq1l5SQwdmJCy3db4v-b_oR_4On0v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919639990</pqid></control><display><type>article</type><title>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Mander, Ülo ; Maddison, Martin ; Soosaar, Kaido ; Karabelnik, Kristjan</creator><creatorcontrib>Mander, Ülo ; Maddison, Martin ; Soosaar, Kaido ; Karabelnik, Kristjan</creatorcontrib><description>Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N 2 O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO 2 and CH 4 fluxes. The lower water depths in Paistu resulted in higher CO 2 and N 2 O, and lower CH 4 emissions relative to other systems.</description><identifier>ISSN: 0277-5212</identifier><identifier>EISSN: 1943-6246</identifier><identifier>DOI: 10.1007/s13157-011-0218-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial wetlands ; Biomedical and Life Sciences ; Carbon dioxide ; Chemical oxygen demand ; Coastal Sciences ; Eco-Healthy Wetlands ; Ecology ; Emissions ; Environmental Management ; Fluxes ; Freshwater &amp; Marine Ecology ; Greenhouse gases ; Hydrogeology ; Hydrology ; Inflow ; Landscape Ecology ; Life Sciences ; Loading rate ; Methane ; Municipal wastewater ; Nitrous oxide ; Nutrient removal ; Organic loading ; Respiration ; Soil erosion ; Wastewater treatment ; Water depth ; Water level fluctuations ; Water levels ; Water purification ; Water table ; Wetlands</subject><ispartof>Wetlands (Wilmington, N.C.), 2011-12, Vol.31 (6), p.1023-1032</ispartof><rights>Society of Wetland Scientists 2011</rights><rights>Society of Wetland Scientists 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</citedby><cites>FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13157-011-0218-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919639990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Mander, Ülo</creatorcontrib><creatorcontrib>Maddison, Martin</creatorcontrib><creatorcontrib>Soosaar, Kaido</creatorcontrib><creatorcontrib>Karabelnik, Kristjan</creatorcontrib><title>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</title><title>Wetlands (Wilmington, N.C.)</title><addtitle>Wetlands</addtitle><description>Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N 2 O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO 2 and CH 4 fluxes. The lower water depths in Paistu resulted in higher CO 2 and N 2 O, and lower CH 4 emissions relative to other systems.</description><subject>Artificial wetlands</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Chemical oxygen demand</subject><subject>Coastal Sciences</subject><subject>Eco-Healthy Wetlands</subject><subject>Ecology</subject><subject>Emissions</subject><subject>Environmental Management</subject><subject>Fluxes</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Greenhouse gases</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Inflow</subject><subject>Landscape Ecology</subject><subject>Life Sciences</subject><subject>Loading rate</subject><subject>Methane</subject><subject>Municipal wastewater</subject><subject>Nitrous oxide</subject><subject>Nutrient removal</subject><subject>Organic loading</subject><subject>Respiration</subject><subject>Soil erosion</subject><subject>Wastewater treatment</subject><subject>Water depth</subject><subject>Water level fluctuations</subject><subject>Water levels</subject><subject>Water purification</subject><subject>Water table</subject><subject>Wetlands</subject><issn>0277-5212</issn><issn>1943-6246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c1ujlL6IRT0UOkxpNmk3bLdtEn20P56U1bw5GkG5n3egQehZyCvQEj5FoBBUWYEICMUquxyg0YgcpZxmvNbNCK0LLOCAr1HDyHsCQFOKYzQabUz-ONwVDpiZ_FX34am2-LFufauddszVl2NZ22vY6_i9bJW0Xi8UpvWYNfhuTem27k-GDxXAU8PTQiN6wK23h3wJG3RJ9jUeG1im8rCI7qzqg3m6XeO0fdsupossuXn_GPyvswUYyJmilKrCVc10doWhDMFQuucK1GVLIeK5KKoN5YxXoOwnJWVtYptSq2V5UWVszF6GXqP3p16E6Lcu9536aWkAgRnQgiSUjCktHcheGPl0TcH5c8SiLyalYNZmczKq1l5SQwdmJCy3db4v-b_oR_4On0v</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Mander, Ülo</creator><creator>Maddison, Martin</creator><creator>Soosaar, Kaido</creator><creator>Karabelnik, Kristjan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20111201</creationdate><title>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</title><author>Mander, Ülo ; Maddison, Martin ; Soosaar, Kaido ; Karabelnik, Kristjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial wetlands</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Chemical oxygen demand</topic><topic>Coastal Sciences</topic><topic>Eco-Healthy Wetlands</topic><topic>Ecology</topic><topic>Emissions</topic><topic>Environmental Management</topic><topic>Fluxes</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Greenhouse gases</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Inflow</topic><topic>Landscape Ecology</topic><topic>Life Sciences</topic><topic>Loading rate</topic><topic>Methane</topic><topic>Municipal wastewater</topic><topic>Nitrous oxide</topic><topic>Nutrient removal</topic><topic>Organic loading</topic><topic>Respiration</topic><topic>Soil erosion</topic><topic>Wastewater treatment</topic><topic>Water depth</topic><topic>Water level fluctuations</topic><topic>Water levels</topic><topic>Water purification</topic><topic>Water table</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mander, Ülo</creatorcontrib><creatorcontrib>Maddison, Martin</creatorcontrib><creatorcontrib>Soosaar, Kaido</creatorcontrib><creatorcontrib>Karabelnik, Kristjan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wetlands (Wilmington, N.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mander, Ülo</au><au>Maddison, Martin</au><au>Soosaar, Kaido</au><au>Karabelnik, Kristjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</atitle><jtitle>Wetlands (Wilmington, N.C.)</jtitle><stitle>Wetlands</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>31</volume><issue>6</issue><spage>1023</spage><epage>1032</epage><pages>1023-1032</pages><issn>0277-5212</issn><eissn>1943-6246</eissn><abstract>Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N 2 O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO 2 and CH 4 fluxes. The lower water depths in Paistu resulted in higher CO 2 and N 2 O, and lower CH 4 emissions relative to other systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s13157-011-0218-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-5212
ispartof Wetlands (Wilmington, N.C.), 2011-12, Vol.31 (6), p.1023-1032
issn 0277-5212
1943-6246
language eng
recordid cdi_proquest_journals_2919639990
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial wetlands
Biomedical and Life Sciences
Carbon dioxide
Chemical oxygen demand
Coastal Sciences
Eco-Healthy Wetlands
Ecology
Emissions
Environmental Management
Fluxes
Freshwater & Marine Ecology
Greenhouse gases
Hydrogeology
Hydrology
Inflow
Landscape Ecology
Life Sciences
Loading rate
Methane
Municipal wastewater
Nitrous oxide
Nutrient removal
Organic loading
Respiration
Soil erosion
Wastewater treatment
Water depth
Water level fluctuations
Water levels
Water purification
Water table
Wetlands
title The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Pulsing%20Hydrology%20and%20Fluctuating%20Water%20Table%20on%20Greenhouse%20Gas%20Emissions%20from%20Constructed%20Wetlands&rft.jtitle=Wetlands%20(Wilmington,%20N.C.)&rft.au=Mander,%20%C3%9Clo&rft.date=2011-12-01&rft.volume=31&rft.issue=6&rft.spage=1023&rft.epage=1032&rft.pages=1023-1032&rft.issn=0277-5212&rft.eissn=1943-6246&rft_id=info:doi/10.1007/s13157-011-0218-z&rft_dat=%3Cproquest_cross%3E2919639990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919639990&rft_id=info:pmid/&rfr_iscdi=true