The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands
Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermitten...
Gespeichert in:
Veröffentlicht in: | Wetlands (Wilmington, N.C.) N.C.), 2011-12, Vol.31 (6), p.1023-1032 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1032 |
---|---|
container_issue | 6 |
container_start_page | 1023 |
container_title | Wetlands (Wilmington, N.C.) |
container_volume | 31 |
creator | Mander, Ülo Maddison, Martin Soosaar, Kaido Karabelnik, Kristjan |
description | Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N
2
O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO
2
and CH
4
fluxes. The lower water depths in Paistu resulted in higher CO
2
and N
2
O, and lower CH
4
emissions relative to other systems. |
doi_str_mv | 10.1007/s13157-011-0218-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919639990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919639990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c1ujlL6IRT0UOkxpNmk3bLdtEn20P56U1bw5GkG5n3egQehZyCvQEj5FoBBUWYEICMUquxyg0YgcpZxmvNbNCK0LLOCAr1HDyHsCQFOKYzQabUz-ONwVDpiZ_FX34am2-LFufauddszVl2NZ22vY6_i9bJW0Xi8UpvWYNfhuTem27k-GDxXAU8PTQiN6wK23h3wJG3RJ9jUeG1im8rCI7qzqg3m6XeO0fdsupossuXn_GPyvswUYyJmilKrCVc10doWhDMFQuucK1GVLIeK5KKoN5YxXoOwnJWVtYptSq2V5UWVszF6GXqP3p16E6Lcu9536aWkAgRnQgiSUjCktHcheGPl0TcH5c8SiLyalYNZmczKq1l5SQwdmJCy3db4v-b_oR_4On0v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919639990</pqid></control><display><type>article</type><title>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Mander, Ülo ; Maddison, Martin ; Soosaar, Kaido ; Karabelnik, Kristjan</creator><creatorcontrib>Mander, Ülo ; Maddison, Martin ; Soosaar, Kaido ; Karabelnik, Kristjan</creatorcontrib><description>Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N
2
O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO
2
and CH
4
fluxes. The lower water depths in Paistu resulted in higher CO
2
and N
2
O, and lower CH
4
emissions relative to other systems.</description><identifier>ISSN: 0277-5212</identifier><identifier>EISSN: 1943-6246</identifier><identifier>DOI: 10.1007/s13157-011-0218-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial wetlands ; Biomedical and Life Sciences ; Carbon dioxide ; Chemical oxygen demand ; Coastal Sciences ; Eco-Healthy Wetlands ; Ecology ; Emissions ; Environmental Management ; Fluxes ; Freshwater & Marine Ecology ; Greenhouse gases ; Hydrogeology ; Hydrology ; Inflow ; Landscape Ecology ; Life Sciences ; Loading rate ; Methane ; Municipal wastewater ; Nitrous oxide ; Nutrient removal ; Organic loading ; Respiration ; Soil erosion ; Wastewater treatment ; Water depth ; Water level fluctuations ; Water levels ; Water purification ; Water table ; Wetlands</subject><ispartof>Wetlands (Wilmington, N.C.), 2011-12, Vol.31 (6), p.1023-1032</ispartof><rights>Society of Wetland Scientists 2011</rights><rights>Society of Wetland Scientists 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</citedby><cites>FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13157-011-0218-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919639990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Mander, Ülo</creatorcontrib><creatorcontrib>Maddison, Martin</creatorcontrib><creatorcontrib>Soosaar, Kaido</creatorcontrib><creatorcontrib>Karabelnik, Kristjan</creatorcontrib><title>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</title><title>Wetlands (Wilmington, N.C.)</title><addtitle>Wetlands</addtitle><description>Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N
2
O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO
2
and CH
4
fluxes. The lower water depths in Paistu resulted in higher CO
2
and N
2
O, and lower CH
4
emissions relative to other systems.</description><subject>Artificial wetlands</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Chemical oxygen demand</subject><subject>Coastal Sciences</subject><subject>Eco-Healthy Wetlands</subject><subject>Ecology</subject><subject>Emissions</subject><subject>Environmental Management</subject><subject>Fluxes</subject><subject>Freshwater & Marine Ecology</subject><subject>Greenhouse gases</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Inflow</subject><subject>Landscape Ecology</subject><subject>Life Sciences</subject><subject>Loading rate</subject><subject>Methane</subject><subject>Municipal wastewater</subject><subject>Nitrous oxide</subject><subject>Nutrient removal</subject><subject>Organic loading</subject><subject>Respiration</subject><subject>Soil erosion</subject><subject>Wastewater treatment</subject><subject>Water depth</subject><subject>Water level fluctuations</subject><subject>Water levels</subject><subject>Water purification</subject><subject>Water table</subject><subject>Wetlands</subject><issn>0277-5212</issn><issn>1943-6246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c1ujlL6IRT0UOkxpNmk3bLdtEn20P56U1bw5GkG5n3egQehZyCvQEj5FoBBUWYEICMUquxyg0YgcpZxmvNbNCK0LLOCAr1HDyHsCQFOKYzQabUz-ONwVDpiZ_FX34am2-LFufauddszVl2NZ22vY6_i9bJW0Xi8UpvWYNfhuTem27k-GDxXAU8PTQiN6wK23h3wJG3RJ9jUeG1im8rCI7qzqg3m6XeO0fdsupossuXn_GPyvswUYyJmilKrCVc10doWhDMFQuucK1GVLIeK5KKoN5YxXoOwnJWVtYptSq2V5UWVszF6GXqP3p16E6Lcu9536aWkAgRnQgiSUjCktHcheGPl0TcH5c8SiLyalYNZmczKq1l5SQwdmJCy3db4v-b_oR_4On0v</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Mander, Ülo</creator><creator>Maddison, Martin</creator><creator>Soosaar, Kaido</creator><creator>Karabelnik, Kristjan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20111201</creationdate><title>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</title><author>Mander, Ülo ; Maddison, Martin ; Soosaar, Kaido ; Karabelnik, Kristjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-a22fc06ad0ccf5063a19cc46a98734180495dbf336d19f6378ffa3b7ccaf65843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial wetlands</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Chemical oxygen demand</topic><topic>Coastal Sciences</topic><topic>Eco-Healthy Wetlands</topic><topic>Ecology</topic><topic>Emissions</topic><topic>Environmental Management</topic><topic>Fluxes</topic><topic>Freshwater & Marine Ecology</topic><topic>Greenhouse gases</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Inflow</topic><topic>Landscape Ecology</topic><topic>Life Sciences</topic><topic>Loading rate</topic><topic>Methane</topic><topic>Municipal wastewater</topic><topic>Nitrous oxide</topic><topic>Nutrient removal</topic><topic>Organic loading</topic><topic>Respiration</topic><topic>Soil erosion</topic><topic>Wastewater treatment</topic><topic>Water depth</topic><topic>Water level fluctuations</topic><topic>Water levels</topic><topic>Water purification</topic><topic>Water table</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mander, Ülo</creatorcontrib><creatorcontrib>Maddison, Martin</creatorcontrib><creatorcontrib>Soosaar, Kaido</creatorcontrib><creatorcontrib>Karabelnik, Kristjan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wetlands (Wilmington, N.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mander, Ülo</au><au>Maddison, Martin</au><au>Soosaar, Kaido</au><au>Karabelnik, Kristjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands</atitle><jtitle>Wetlands (Wilmington, N.C.)</jtitle><stitle>Wetlands</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>31</volume><issue>6</issue><spage>1023</spage><epage>1032</epage><pages>1023-1032</pages><issn>0277-5212</issn><eissn>1943-6246</eissn><abstract>Intermittent loading is often used in constructed wetlands (CW) to improve water purification capacity, however, little is known of its impact on greenhouse gas (GHG) emissions.. We studied GHG fluxes in three CWs for municipal wastewater treatment in Estonia: the hybrid CW in Kõo had an intermittently loaded (8–10 pulses a day) vertical subsurface flow (VSSF) filter and a horizontal subsurface flow (HSSF) filter with stable water level (10 cm below the surface), the HSSF filter in Kodijärve with higher (42 cm) but more fluctuating water level (from 5 to 75 cm) in inflow and lower (52 cm) but stable water level (30–70 cm) in outflow, and the HSSF filter in Paistu with fluctuating water table (0–70 cm). Intermittent loading enhanced N
2
O emissions from the VSSF filter in Kõo and the inflow parts of the HSSF in Kodijärve. Due to higher organic loading rates in the inflow part of the HSSF in Kodijärve and in the VSSF filter in Kõo, the fluctuating water table/intermittent loading did not influence the CO
2
and CH
4
fluxes. The lower water depths in Paistu resulted in higher CO
2
and N
2
O, and lower CH
4
emissions relative to other systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s13157-011-0218-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-5212 |
ispartof | Wetlands (Wilmington, N.C.), 2011-12, Vol.31 (6), p.1023-1032 |
issn | 0277-5212 1943-6246 |
language | eng |
recordid | cdi_proquest_journals_2919639990 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial wetlands Biomedical and Life Sciences Carbon dioxide Chemical oxygen demand Coastal Sciences Eco-Healthy Wetlands Ecology Emissions Environmental Management Fluxes Freshwater & Marine Ecology Greenhouse gases Hydrogeology Hydrology Inflow Landscape Ecology Life Sciences Loading rate Methane Municipal wastewater Nitrous oxide Nutrient removal Organic loading Respiration Soil erosion Wastewater treatment Water depth Water level fluctuations Water levels Water purification Water table Wetlands |
title | The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Pulsing%20Hydrology%20and%20Fluctuating%20Water%20Table%20on%20Greenhouse%20Gas%20Emissions%20from%20Constructed%20Wetlands&rft.jtitle=Wetlands%20(Wilmington,%20N.C.)&rft.au=Mander,%20%C3%9Clo&rft.date=2011-12-01&rft.volume=31&rft.issue=6&rft.spage=1023&rft.epage=1032&rft.pages=1023-1032&rft.issn=0277-5212&rft.eissn=1943-6246&rft_id=info:doi/10.1007/s13157-011-0218-z&rft_dat=%3Cproquest_cross%3E2919639990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919639990&rft_id=info:pmid/&rfr_iscdi=true |