Study of perovskite CH3NH3PbI3 thin films under thermal exposure

Methyl-ammonium lead iodide-based perovskite materials have been extensively studied for applications in solar cells, which have reached high efficiencies of about 24% in the laboratory. However, being a hybrid (organic–inorganic) material, methyl-ammonium lead iodide can be affected by climatic con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of materials science 2021-06, Vol.44 (2), p.83, Article 83
Hauptverfasser: Sanchez-Diaz, Jesus, Torres, Jeevan, de la Torre, Jorge, Esparza, Diego, Rivas, Jesús Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 83
container_title Bulletin of materials science
container_volume 44
creator Sanchez-Diaz, Jesus
Torres, Jeevan
de la Torre, Jorge
Esparza, Diego
Rivas, Jesús Manuel
description Methyl-ammonium lead iodide-based perovskite materials have been extensively studied for applications in solar cells, which have reached high efficiencies of about 24% in the laboratory. However, being a hybrid (organic–inorganic) material, methyl-ammonium lead iodide can be affected by climatic conditions, such as humidity, light and temperature. While perovskite films have been synthesized, and annealing as part of the fabrication process has been reported, there have been, however, relatively few studies on the effects of temperature when the films, after synthesis, have been intentionally exposed to different temperatures. In this work, a study of the behaviour of perovskite films (MAPbI 3 ) has been conducted exposing the films to different temperatures (25, 40, 50, 60 and 70°C) in small greenhouses. Homogeneous perovskite films were deposited by the anti-solvent method. The films were characterized by field-emission scanning electron microscopy, X-ray diffraction and optical absorption. The effects of temperature on film morphology, grain size and light absorbance are reported.
doi_str_mv 10.1007/s12034-021-02400-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919639351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919639351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a8ce8094f5f5995fdaed9909bb5d84ae43cd1064d5d38eabfb416c9c1aa4c5ea3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKf_gE8Fn6OXJmmbN2XoNhgqqM8hbS7aubU1aWX7741W8M2H447j-wM-hJwzuGQA-VVgKXBBIWVxBADdHZAJqJzTPMvUYbxTCVTkkB-TkxDWAEwJwSbk-qkf7D5pXdKhbz_De91jMlvw-wV_LJc86d_qJnH1ZhuSobHo4wP91mwS3HVtGDyekiNnNgHPfveUvNzdPs8WdPUwX85uVrTisuipKSosQAknnVRKOmvQKgWqLKUthEHBK8sgE1ZaXqApXSlYVqmKGSMqiYZPycWY2_n2Y8DQ63U7-CZW6lQxlXHFJYuqdFRVvg3Bo9Odr7fG7zUD_U1Kj6R0JKV_SOldNPHRFKK4eUX_F_2P6wsZLGwa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919639351</pqid></control><display><type>article</type><title>Study of perovskite CH3NH3PbI3 thin films under thermal exposure</title><source>SpringerLink Journals</source><source>Indian Academy of Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>Free Full-Text Journals in Chemistry</source><source>ProQuest Central</source><creator>Sanchez-Diaz, Jesus ; Torres, Jeevan ; de la Torre, Jorge ; Esparza, Diego ; Rivas, Jesús Manuel</creator><creatorcontrib>Sanchez-Diaz, Jesus ; Torres, Jeevan ; de la Torre, Jorge ; Esparza, Diego ; Rivas, Jesús Manuel</creatorcontrib><description>Methyl-ammonium lead iodide-based perovskite materials have been extensively studied for applications in solar cells, which have reached high efficiencies of about 24% in the laboratory. However, being a hybrid (organic–inorganic) material, methyl-ammonium lead iodide can be affected by climatic conditions, such as humidity, light and temperature. While perovskite films have been synthesized, and annealing as part of the fabrication process has been reported, there have been, however, relatively few studies on the effects of temperature when the films, after synthesis, have been intentionally exposed to different temperatures. In this work, a study of the behaviour of perovskite films (MAPbI 3 ) has been conducted exposing the films to different temperatures (25, 40, 50, 60 and 70°C) in small greenhouses. Homogeneous perovskite films were deposited by the anti-solvent method. The films were characterized by field-emission scanning electron microscopy, X-ray diffraction and optical absorption. The effects of temperature on film morphology, grain size and light absorbance are reported.</description><identifier>ISSN: 0250-4707</identifier><identifier>EISSN: 0973-7669</identifier><identifier>DOI: 10.1007/s12034-021-02400-x</identifier><language>eng</language><publisher>Bangalore: Indian Academy of Sciences</publisher><subject>Alternative energy sources ; Chemistry and Materials Science ; Efficiency ; Engineering ; Exposure ; Glass substrates ; Grain size ; Greenhouse gases ; Light ; Materials Science ; Morphology ; Perovskites ; Phase transitions ; Photovoltaic cells ; Solar cells ; Solvents ; Temperature ; Temperature effects ; Thin films</subject><ispartof>Bulletin of materials science, 2021-06, Vol.44 (2), p.83, Article 83</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a8ce8094f5f5995fdaed9909bb5d84ae43cd1064d5d38eabfb416c9c1aa4c5ea3</citedby><cites>FETCH-LOGICAL-c358t-a8ce8094f5f5995fdaed9909bb5d84ae43cd1064d5d38eabfb416c9c1aa4c5ea3</cites><orcidid>0000-0002-5021-4942 ; 0000-0001-6090-5547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2919639351/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919639351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215,74048</link.rule.ids></links><search><creatorcontrib>Sanchez-Diaz, Jesus</creatorcontrib><creatorcontrib>Torres, Jeevan</creatorcontrib><creatorcontrib>de la Torre, Jorge</creatorcontrib><creatorcontrib>Esparza, Diego</creatorcontrib><creatorcontrib>Rivas, Jesús Manuel</creatorcontrib><title>Study of perovskite CH3NH3PbI3 thin films under thermal exposure</title><title>Bulletin of materials science</title><addtitle>Bull Mater Sci</addtitle><description>Methyl-ammonium lead iodide-based perovskite materials have been extensively studied for applications in solar cells, which have reached high efficiencies of about 24% in the laboratory. However, being a hybrid (organic–inorganic) material, methyl-ammonium lead iodide can be affected by climatic conditions, such as humidity, light and temperature. While perovskite films have been synthesized, and annealing as part of the fabrication process has been reported, there have been, however, relatively few studies on the effects of temperature when the films, after synthesis, have been intentionally exposed to different temperatures. In this work, a study of the behaviour of perovskite films (MAPbI 3 ) has been conducted exposing the films to different temperatures (25, 40, 50, 60 and 70°C) in small greenhouses. Homogeneous perovskite films were deposited by the anti-solvent method. The films were characterized by field-emission scanning electron microscopy, X-ray diffraction and optical absorption. The effects of temperature on film morphology, grain size and light absorbance are reported.</description><subject>Alternative energy sources</subject><subject>Chemistry and Materials Science</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Exposure</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Greenhouse gases</subject><subject>Light</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solvents</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thin films</subject><issn>0250-4707</issn><issn>0973-7669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kN9LwzAQx4MoOKf_gE8Fn6OXJmmbN2XoNhgqqM8hbS7aubU1aWX7741W8M2H447j-wM-hJwzuGQA-VVgKXBBIWVxBADdHZAJqJzTPMvUYbxTCVTkkB-TkxDWAEwJwSbk-qkf7D5pXdKhbz_De91jMlvw-wV_LJc86d_qJnH1ZhuSobHo4wP91mwS3HVtGDyekiNnNgHPfveUvNzdPs8WdPUwX85uVrTisuipKSosQAknnVRKOmvQKgWqLKUthEHBK8sgE1ZaXqApXSlYVqmKGSMqiYZPycWY2_n2Y8DQ63U7-CZW6lQxlXHFJYuqdFRVvg3Bo9Odr7fG7zUD_U1Kj6R0JKV_SOldNPHRFKK4eUX_F_2P6wsZLGwa</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Sanchez-Diaz, Jesus</creator><creator>Torres, Jeevan</creator><creator>de la Torre, Jorge</creator><creator>Esparza, Diego</creator><creator>Rivas, Jesús Manuel</creator><general>Indian Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5021-4942</orcidid><orcidid>https://orcid.org/0000-0001-6090-5547</orcidid></search><sort><creationdate>20210601</creationdate><title>Study of perovskite CH3NH3PbI3 thin films under thermal exposure</title><author>Sanchez-Diaz, Jesus ; Torres, Jeevan ; de la Torre, Jorge ; Esparza, Diego ; Rivas, Jesús Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a8ce8094f5f5995fdaed9909bb5d84ae43cd1064d5d38eabfb416c9c1aa4c5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Chemistry and Materials Science</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Exposure</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Greenhouse gases</topic><topic>Light</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solvents</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Diaz, Jesus</creatorcontrib><creatorcontrib>Torres, Jeevan</creatorcontrib><creatorcontrib>de la Torre, Jorge</creatorcontrib><creatorcontrib>Esparza, Diego</creatorcontrib><creatorcontrib>Rivas, Jesús Manuel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Bulletin of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Diaz, Jesus</au><au>Torres, Jeevan</au><au>de la Torre, Jorge</au><au>Esparza, Diego</au><au>Rivas, Jesús Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of perovskite CH3NH3PbI3 thin films under thermal exposure</atitle><jtitle>Bulletin of materials science</jtitle><stitle>Bull Mater Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>83</spage><pages>83-</pages><artnum>83</artnum><issn>0250-4707</issn><eissn>0973-7669</eissn><abstract>Methyl-ammonium lead iodide-based perovskite materials have been extensively studied for applications in solar cells, which have reached high efficiencies of about 24% in the laboratory. However, being a hybrid (organic–inorganic) material, methyl-ammonium lead iodide can be affected by climatic conditions, such as humidity, light and temperature. While perovskite films have been synthesized, and annealing as part of the fabrication process has been reported, there have been, however, relatively few studies on the effects of temperature when the films, after synthesis, have been intentionally exposed to different temperatures. In this work, a study of the behaviour of perovskite films (MAPbI 3 ) has been conducted exposing the films to different temperatures (25, 40, 50, 60 and 70°C) in small greenhouses. Homogeneous perovskite films were deposited by the anti-solvent method. The films were characterized by field-emission scanning electron microscopy, X-ray diffraction and optical absorption. The effects of temperature on film morphology, grain size and light absorbance are reported.</abstract><cop>Bangalore</cop><pub>Indian Academy of Sciences</pub><doi>10.1007/s12034-021-02400-x</doi><orcidid>https://orcid.org/0000-0002-5021-4942</orcidid><orcidid>https://orcid.org/0000-0001-6090-5547</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0250-4707
ispartof Bulletin of materials science, 2021-06, Vol.44 (2), p.83, Article 83
issn 0250-4707
0973-7669
language eng
recordid cdi_proquest_journals_2919639351
source SpringerLink Journals; Indian Academy of Sciences; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; Free Full-Text Journals in Chemistry; ProQuest Central
subjects Alternative energy sources
Chemistry and Materials Science
Efficiency
Engineering
Exposure
Glass substrates
Grain size
Greenhouse gases
Light
Materials Science
Morphology
Perovskites
Phase transitions
Photovoltaic cells
Solar cells
Solvents
Temperature
Temperature effects
Thin films
title Study of perovskite CH3NH3PbI3 thin films under thermal exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20perovskite%20CH3NH3PbI3%20thin%20films%20under%20thermal%20exposure&rft.jtitle=Bulletin%20of%20materials%20science&rft.au=Sanchez-Diaz,%20Jesus&rft.date=2021-06-01&rft.volume=44&rft.issue=2&rft.spage=83&rft.pages=83-&rft.artnum=83&rft.issn=0250-4707&rft.eissn=0973-7669&rft_id=info:doi/10.1007/s12034-021-02400-x&rft_dat=%3Cproquest_cross%3E2919639351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919639351&rft_id=info:pmid/&rfr_iscdi=true