On the dynamics of axially functionally graded CNT strengthened deformable beams
In this study, by functionally grading carbon nanotube (CNT) fibres through the axial direction of deformable beams, a new model for strengthening such structures is formulated. The strengthened deformable beam is additionally supported by a varying elastic foundation which is modelled via the Winkl...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2020-05, Vol.135 (5), p.415, Article 415 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 415 |
container_title | European physical journal plus |
container_volume | 135 |
creator | Khaniki, Hossein Bakhshi Ghayesh, Mergen H. |
description | In this study, by functionally grading carbon nanotube (CNT) fibres through the axial direction of deformable beams, a new model for strengthening such structures is formulated. The strengthened deformable beam is additionally supported by a varying elastic foundation which is modelled via the Winkler–Pasternak elastic foundation. CNT distribution in the longitudinal direction is modelled using a power-law function presenting general forms of variation from linear to parabolic models. Equations of motion are determined using Hamilton’s principle and are solved by employing the generalised differential quadrature approach method. A comprehensive parametric investigation is presented in order to indicate the influence of having CNT fibres distributed functionally through the length. It is shown that grading CNT fibres axially have a significant effect in varying the natural frequency parameter. Moreover, the influence of having Winkler–Pasternak elastic bed on the free vibration of such structures is discussed considering different types of foundation stiffness variation through the length. A comprehensive comparison study is presented to verify the current methodology and formulation by using previous literature for foundation modelling and FE modelling for linearly varying CNT’s longitudinal distribution, which for all the cases, a good agreement between the results is observed. |
doi_str_mv | 10.1140/epjp/s13360-020-00433-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919623660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919623660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a3ab40f4856ff7413b28ef12e0450057e7d582338d4223a28fd7538b542841063</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOHS_wYDXdfk4adNLGX7BcF7M65A2yexo05p04P692SronQfCOQnneQkPQjeU3FEKZGGH3bCIlPOcZISlQ4DzTJyhGaMlyQQAnP-ZL9E8xh1JBSWFEmbobe3x-GGxOXjdNXXEvcP6q9Fte8Bu7-ux6f3psg3aWIOXrxscx2D9NlE-PRjr-tDpqrW4srqL1-jC6Tba-U-_Qu-PD5vlc7ZaP70s71dZzTmMmea6AuJAity5AiivmLSOMktAECIKWxghGefSAGNcM-lMIbisBDAJlOT8Ct1OuUPoP_c2jmrX70P6a1SspGXOeJ6TtFVMW3XoYwzWqSE0nQ4HRYk6GlRHg2oyqJJBdTKoRCLlRMZE-K0Nv_n_od-cAHXv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919623660</pqid></control><display><type>article</type><title>On the dynamics of axially functionally graded CNT strengthened deformable beams</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Khaniki, Hossein Bakhshi ; Ghayesh, Mergen H.</creator><creatorcontrib>Khaniki, Hossein Bakhshi ; Ghayesh, Mergen H.</creatorcontrib><description>In this study, by functionally grading carbon nanotube (CNT) fibres through the axial direction of deformable beams, a new model for strengthening such structures is formulated. The strengthened deformable beam is additionally supported by a varying elastic foundation which is modelled via the Winkler–Pasternak elastic foundation. CNT distribution in the longitudinal direction is modelled using a power-law function presenting general forms of variation from linear to parabolic models. Equations of motion are determined using Hamilton’s principle and are solved by employing the generalised differential quadrature approach method. A comprehensive parametric investigation is presented in order to indicate the influence of having CNT fibres distributed functionally through the length. It is shown that grading CNT fibres axially have a significant effect in varying the natural frequency parameter. Moreover, the influence of having Winkler–Pasternak elastic bed on the free vibration of such structures is discussed considering different types of foundation stiffness variation through the length. A comprehensive comparison study is presented to verify the current methodology and formulation by using previous literature for foundation modelling and FE modelling for linearly varying CNT’s longitudinal distribution, which for all the cases, a good agreement between the results is observed.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-020-00433-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Carbon nanotubes ; Complex Systems ; Condensed Matter Physics ; Elastic deformation ; Elastic foundations ; Equations of motion ; Fibers ; Formability ; Free vibration ; Hamilton's principle ; Heat treating ; Literature reviews ; Mathematical and Computational Physics ; Modelling ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Powder metallurgy ; Quadratures ; Regular Article ; Resonant frequencies ; Theoretical</subject><ispartof>European physical journal plus, 2020-05, Vol.135 (5), p.415, Article 415</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a3ab40f4856ff7413b28ef12e0450057e7d582338d4223a28fd7538b542841063</citedby><cites>FETCH-LOGICAL-c334t-a3ab40f4856ff7413b28ef12e0450057e7d582338d4223a28fd7538b542841063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-020-00433-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919623660?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Khaniki, Hossein Bakhshi</creatorcontrib><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><title>On the dynamics of axially functionally graded CNT strengthened deformable beams</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this study, by functionally grading carbon nanotube (CNT) fibres through the axial direction of deformable beams, a new model for strengthening such structures is formulated. The strengthened deformable beam is additionally supported by a varying elastic foundation which is modelled via the Winkler–Pasternak elastic foundation. CNT distribution in the longitudinal direction is modelled using a power-law function presenting general forms of variation from linear to parabolic models. Equations of motion are determined using Hamilton’s principle and are solved by employing the generalised differential quadrature approach method. A comprehensive parametric investigation is presented in order to indicate the influence of having CNT fibres distributed functionally through the length. It is shown that grading CNT fibres axially have a significant effect in varying the natural frequency parameter. Moreover, the influence of having Winkler–Pasternak elastic bed on the free vibration of such structures is discussed considering different types of foundation stiffness variation through the length. A comprehensive comparison study is presented to verify the current methodology and formulation by using previous literature for foundation modelling and FE modelling for linearly varying CNT’s longitudinal distribution, which for all the cases, a good agreement between the results is observed.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Carbon nanotubes</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Elastic deformation</subject><subject>Elastic foundations</subject><subject>Equations of motion</subject><subject>Fibers</subject><subject>Formability</subject><subject>Free vibration</subject><subject>Hamilton's principle</subject><subject>Heat treating</subject><subject>Literature reviews</subject><subject>Mathematical and Computational Physics</subject><subject>Modelling</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Powder metallurgy</subject><subject>Quadratures</subject><subject>Regular Article</subject><subject>Resonant frequencies</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhoMoOHS_wYDXdfk4adNLGX7BcF7M65A2yexo05p04P692SronQfCOQnneQkPQjeU3FEKZGGH3bCIlPOcZISlQ4DzTJyhGaMlyQQAnP-ZL9E8xh1JBSWFEmbobe3x-GGxOXjdNXXEvcP6q9Fte8Bu7-ux6f3psg3aWIOXrxscx2D9NlE-PRjr-tDpqrW4srqL1-jC6Tba-U-_Qu-PD5vlc7ZaP70s71dZzTmMmea6AuJAity5AiivmLSOMktAECIKWxghGefSAGNcM-lMIbisBDAJlOT8Ct1OuUPoP_c2jmrX70P6a1SspGXOeJ6TtFVMW3XoYwzWqSE0nQ4HRYk6GlRHg2oyqJJBdTKoRCLlRMZE-K0Nv_n_od-cAHXv</recordid><startdate>20200519</startdate><enddate>20200519</enddate><creator>Khaniki, Hossein Bakhshi</creator><creator>Ghayesh, Mergen H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200519</creationdate><title>On the dynamics of axially functionally graded CNT strengthened deformable beams</title><author>Khaniki, Hossein Bakhshi ; Ghayesh, Mergen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a3ab40f4856ff7413b28ef12e0450057e7d582338d4223a28fd7538b542841063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Carbon nanotubes</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Elastic deformation</topic><topic>Elastic foundations</topic><topic>Equations of motion</topic><topic>Fibers</topic><topic>Formability</topic><topic>Free vibration</topic><topic>Hamilton's principle</topic><topic>Heat treating</topic><topic>Literature reviews</topic><topic>Mathematical and Computational Physics</topic><topic>Modelling</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Powder metallurgy</topic><topic>Quadratures</topic><topic>Regular Article</topic><topic>Resonant frequencies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaniki, Hossein Bakhshi</creatorcontrib><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaniki, Hossein Bakhshi</au><au>Ghayesh, Mergen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dynamics of axially functionally graded CNT strengthened deformable beams</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2020-05-19</date><risdate>2020</risdate><volume>135</volume><issue>5</issue><spage>415</spage><pages>415-</pages><artnum>415</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this study, by functionally grading carbon nanotube (CNT) fibres through the axial direction of deformable beams, a new model for strengthening such structures is formulated. The strengthened deformable beam is additionally supported by a varying elastic foundation which is modelled via the Winkler–Pasternak elastic foundation. CNT distribution in the longitudinal direction is modelled using a power-law function presenting general forms of variation from linear to parabolic models. Equations of motion are determined using Hamilton’s principle and are solved by employing the generalised differential quadrature approach method. A comprehensive parametric investigation is presented in order to indicate the influence of having CNT fibres distributed functionally through the length. It is shown that grading CNT fibres axially have a significant effect in varying the natural frequency parameter. Moreover, the influence of having Winkler–Pasternak elastic bed on the free vibration of such structures is discussed considering different types of foundation stiffness variation through the length. A comprehensive comparison study is presented to verify the current methodology and formulation by using previous literature for foundation modelling and FE modelling for linearly varying CNT’s longitudinal distribution, which for all the cases, a good agreement between the results is observed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-020-00433-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2020-05, Vol.135 (5), p.415, Article 415 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919623660 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Applied and Technical Physics Atomic Carbon nanotubes Complex Systems Condensed Matter Physics Elastic deformation Elastic foundations Equations of motion Fibers Formability Free vibration Hamilton's principle Heat treating Literature reviews Mathematical and Computational Physics Modelling Molecular Optical and Plasma Physics Physics Physics and Astronomy Powder metallurgy Quadratures Regular Article Resonant frequencies Theoretical |
title | On the dynamics of axially functionally graded CNT strengthened deformable beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dynamics%20of%20axially%20functionally%20graded%20CNT%20strengthened%20deformable%20beams&rft.jtitle=European%20physical%20journal%20plus&rft.au=Khaniki,%20Hossein%20Bakhshi&rft.date=2020-05-19&rft.volume=135&rft.issue=5&rft.spage=415&rft.pages=415-&rft.artnum=415&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-020-00433-5&rft_dat=%3Cproquest_cross%3E2919623660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919623660&rft_id=info:pmid/&rfr_iscdi=true |