Fractional conductivity in 2D and 3D crystals

. In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert W function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2018-04, Vol.133 (4), p.145, Article 145
Hauptverfasser: Sidharth, B. G., Das, Abhishek, Valluri, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 145
container_title European physical journal plus
container_volume 133
creator Sidharth, B. G.
Das, Abhishek
Valluri, S. R.
description . In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert W function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung.
doi_str_mv 10.1140/epjp/i2018-11965-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919617882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919617882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7BzwVPMfNZNI2Ocqu6woLXvQc0iaVlrWtSSv035vdCnpyLm8G3htmPkJugd0DCLZ2fdOva85AUgCVpVRckAUHxWgqhLj801-TVQgNiyUUCCUWhO68KYe6a80xKbvWjnH4qocpqduEbxPT2gS3SemnMJhjuCFXVRS3-tEleds9vm729PDy9Lx5ONASQQ1UIsMcIctSiSYrVI42kzli6qy1wjErGHLgmEJWWFkC5sKmaCppjHV5Abgkd_Pe3nefowuDbrrRxxuD5iq-CLmUPLr47Cp9F4J3le59_WH8pIHpExl9IqPPZPSZjBYxhHMoRHP77vzv6n9S32IfZZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919617882</pqid></control><display><type>article</type><title>Fractional conductivity in 2D and 3D crystals</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Sidharth, B. G. ; Das, Abhishek ; Valluri, S. R.</creator><creatorcontrib>Sidharth, B. G. ; Das, Abhishek ; Valluri, S. R.</creatorcontrib><description>. In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert W function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2018-11965-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Complex Systems ; Condensed Matter Physics ; Conductivity ; Crystals ; Electromagnetism ; Geometry ; Graphene ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Neutrinos ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum Hall effect ; Regular Article ; Spacetime ; Theoretical</subject><ispartof>European physical journal plus, 2018-04, Vol.133 (4), p.145, Article 145</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</citedby><cites>FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2018-11965-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919617882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Sidharth, B. G.</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><creatorcontrib>Valluri, S. R.</creatorcontrib><title>Fractional conductivity in 2D and 3D crystals</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert W function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Crystals</subject><subject>Electromagnetism</subject><subject>Geometry</subject><subject>Graphene</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Neutrinos</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Hall effect</subject><subject>Regular Article</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLxDAQhYMouKz7BzwVPMfNZNI2Ocqu6woLXvQc0iaVlrWtSSv035vdCnpyLm8G3htmPkJugd0DCLZ2fdOva85AUgCVpVRckAUHxWgqhLj801-TVQgNiyUUCCUWhO68KYe6a80xKbvWjnH4qocpqduEbxPT2gS3SemnMJhjuCFXVRS3-tEleds9vm729PDy9Lx5ONASQQ1UIsMcIctSiSYrVI42kzli6qy1wjErGHLgmEJWWFkC5sKmaCppjHV5Abgkd_Pe3nefowuDbrrRxxuD5iq-CLmUPLr47Cp9F4J3le59_WH8pIHpExl9IqPPZPSZjBYxhHMoRHP77vzv6n9S32IfZZE</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sidharth, B. G.</creator><creator>Das, Abhishek</creator><creator>Valluri, S. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180401</creationdate><title>Fractional conductivity in 2D and 3D crystals</title><author>Sidharth, B. G. ; Das, Abhishek ; Valluri, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Crystals</topic><topic>Electromagnetism</topic><topic>Geometry</topic><topic>Graphene</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Neutrinos</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Hall effect</topic><topic>Regular Article</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidharth, B. G.</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><creatorcontrib>Valluri, S. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidharth, B. G.</au><au>Das, Abhishek</au><au>Valluri, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional conductivity in 2D and 3D crystals</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>133</volume><issue>4</issue><spage>145</spage><pages>145-</pages><artnum>145</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert W function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2018-11965-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2018-04, Vol.133 (4), p.145, Article 145
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919617882
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Applied and Technical Physics
Approximation
Atomic
Complex Systems
Condensed Matter Physics
Conductivity
Crystals
Electromagnetism
Geometry
Graphene
Magnetic fields
Mathematical and Computational Physics
Molecular
Neutrinos
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum Hall effect
Regular Article
Spacetime
Theoretical
title Fractional conductivity in 2D and 3D crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20conductivity%20in%202D%20and%203D%20crystals&rft.jtitle=European%20physical%20journal%20plus&rft.au=Sidharth,%20B.%20G.&rft.date=2018-04-01&rft.volume=133&rft.issue=4&rft.spage=145&rft.pages=145-&rft.artnum=145&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2018-11965-4&rft_dat=%3Cproquest_cross%3E2919617882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919617882&rft_id=info:pmid/&rfr_iscdi=true