Fractional conductivity in 2D and 3D crystals
. In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert W function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry unde...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2018-04, Vol.133 (4), p.145, Article 145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 145 |
container_title | European physical journal plus |
container_volume | 133 |
creator | Sidharth, B. G. Das, Abhishek Valluri, S. R. |
description | .
In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert
W
function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung. |
doi_str_mv | 10.1140/epjp/i2018-11965-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919617882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919617882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7BzwVPMfNZNI2Ocqu6woLXvQc0iaVlrWtSSv035vdCnpyLm8G3htmPkJugd0DCLZ2fdOva85AUgCVpVRckAUHxWgqhLj801-TVQgNiyUUCCUWhO68KYe6a80xKbvWjnH4qocpqduEbxPT2gS3SemnMJhjuCFXVRS3-tEleds9vm729PDy9Lx5ONASQQ1UIsMcIctSiSYrVI42kzli6qy1wjErGHLgmEJWWFkC5sKmaCppjHV5Abgkd_Pe3nefowuDbrrRxxuD5iq-CLmUPLr47Cp9F4J3le59_WH8pIHpExl9IqPPZPSZjBYxhHMoRHP77vzv6n9S32IfZZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919617882</pqid></control><display><type>article</type><title>Fractional conductivity in 2D and 3D crystals</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Sidharth, B. G. ; Das, Abhishek ; Valluri, S. R.</creator><creatorcontrib>Sidharth, B. G. ; Das, Abhishek ; Valluri, S. R.</creatorcontrib><description>.
In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert
W
function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2018-11965-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Complex Systems ; Condensed Matter Physics ; Conductivity ; Crystals ; Electromagnetism ; Geometry ; Graphene ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Neutrinos ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum Hall effect ; Regular Article ; Spacetime ; Theoretical</subject><ispartof>European physical journal plus, 2018-04, Vol.133 (4), p.145, Article 145</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</citedby><cites>FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2018-11965-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919617882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Sidharth, B. G.</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><creatorcontrib>Valluri, S. R.</creatorcontrib><title>Fractional conductivity in 2D and 3D crystals</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>.
In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert
W
function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Crystals</subject><subject>Electromagnetism</subject><subject>Geometry</subject><subject>Graphene</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Neutrinos</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Hall effect</subject><subject>Regular Article</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLxDAQhYMouKz7BzwVPMfNZNI2Ocqu6woLXvQc0iaVlrWtSSv035vdCnpyLm8G3htmPkJugd0DCLZ2fdOva85AUgCVpVRckAUHxWgqhLj801-TVQgNiyUUCCUWhO68KYe6a80xKbvWjnH4qocpqduEbxPT2gS3SemnMJhjuCFXVRS3-tEleds9vm729PDy9Lx5ONASQQ1UIsMcIctSiSYrVI42kzli6qy1wjErGHLgmEJWWFkC5sKmaCppjHV5Abgkd_Pe3nefowuDbrrRxxuD5iq-CLmUPLr47Cp9F4J3le59_WH8pIHpExl9IqPPZPSZjBYxhHMoRHP77vzv6n9S32IfZZE</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sidharth, B. G.</creator><creator>Das, Abhishek</creator><creator>Valluri, S. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180401</creationdate><title>Fractional conductivity in 2D and 3D crystals</title><author>Sidharth, B. G. ; Das, Abhishek ; Valluri, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-830373166583a6b973d687335eddd4e0d4032123516bd8c1374d53af8aade7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Crystals</topic><topic>Electromagnetism</topic><topic>Geometry</topic><topic>Graphene</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Neutrinos</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Hall effect</topic><topic>Regular Article</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidharth, B. G.</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><creatorcontrib>Valluri, S. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidharth, B. G.</au><au>Das, Abhishek</au><au>Valluri, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional conductivity in 2D and 3D crystals</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>133</volume><issue>4</issue><spage>145</spage><pages>145-</pages><artnum>145</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>.
In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert
W
function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self-energy that arises due to random fluctuations or zitterbewegung.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2018-11965-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2018-04, Vol.133 (4), p.145, Article 145 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919617882 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Applied and Technical Physics Approximation Atomic Complex Systems Condensed Matter Physics Conductivity Crystals Electromagnetism Geometry Graphene Magnetic fields Mathematical and Computational Physics Molecular Neutrinos Optical and Plasma Physics Physics Physics and Astronomy Quantum Hall effect Regular Article Spacetime Theoretical |
title | Fractional conductivity in 2D and 3D crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20conductivity%20in%202D%20and%203D%20crystals&rft.jtitle=European%20physical%20journal%20plus&rft.au=Sidharth,%20B.%20G.&rft.date=2018-04-01&rft.volume=133&rft.issue=4&rft.spage=145&rft.pages=145-&rft.artnum=145&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2018-11965-4&rft_dat=%3Cproquest_cross%3E2919617882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919617882&rft_id=info:pmid/&rfr_iscdi=true |