Predicting political preference of Twitter users

We study the problem of predicting the political preference of users on the Twitter network, showing that the political preference of users can be predicted from their Twitter behavior towards political parties. We show this by building prediction models based on a variety of contextual and behavior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social network analysis and mining 2014-12, Vol.4 (1), p.193, Article 193
Hauptverfasser: Makazhanov, Aibek, Rafiei, Davood, Waqar, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 193
container_title Social network analysis and mining
container_volume 4
creator Makazhanov, Aibek
Rafiei, Davood
Waqar, Muhammad
description We study the problem of predicting the political preference of users on the Twitter network, showing that the political preference of users can be predicted from their Twitter behavior towards political parties. We show this by building prediction models based on a variety of contextual and behavioral features, training the models by resorting to a distant supervision approach and considering party candidates to have a predefined preference towards their respective parties. A language model for each party is learned from the content of the tweets by the party candidates, and the preference of a user is assessed based on the alignment of user tweets with the language models of the parties. We evaluate our work in the context of two real elections: 2012 Albertan and 2013 Pakistani general elections. In both cases, we show that our model outperforms, in terms of the F -measure, sentiment and text classification approaches and is at par with the human annotators. We further use our model to analyze the preference changes over the course of the election campaign and report results that would be difficult to attain by human annotators.
doi_str_mv 10.1007/s13278-014-0193-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919612144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919612144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3da45ac3f919d9cf81bb2a5dcd69260d36781f33b812c858afa5f2c9fb2102c3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwVPFdnkiZNjrL4Dxb00HtI02TpsrY1SRG_vVkqevIwzBzee_P4EXKNcIsA9V1ERmtZAlZ5FCv5GVmhFKrklVDnvzeHS7KJ8QAACIwpECsCb8F1vU39sC-m8din3ppjMQXnXXCDdcXoi-azT8mFYo4uxCty4c0xus3PXpPm8aHZPpe716eX7f2utAxFKllnKm4s8wpVp6yX2LbU8M52QlEBHRO1RM9YK5FayaXxhntqlW8pArVsTW6W2CmMH7OLSR_GOQz5o6Y5UiDFqsoqXFQ2jDHm0noK_bsJXxpBn9DoBY3OaPQJjebZQxdPzNph78Jf8v-mbxNiZYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919612144</pqid></control><display><type>article</type><title>Predicting political preference of Twitter users</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Makazhanov, Aibek ; Rafiei, Davood ; Waqar, Muhammad</creator><creatorcontrib>Makazhanov, Aibek ; Rafiei, Davood ; Waqar, Muhammad</creatorcontrib><description>We study the problem of predicting the political preference of users on the Twitter network, showing that the political preference of users can be predicted from their Twitter behavior towards political parties. We show this by building prediction models based on a variety of contextual and behavioral features, training the models by resorting to a distant supervision approach and considering party candidates to have a predefined preference towards their respective parties. A language model for each party is learned from the content of the tweets by the party candidates, and the preference of a user is assessed based on the alignment of user tweets with the language models of the parties. We evaluate our work in the context of two real elections: 2012 Albertan and 2013 Pakistani general elections. In both cases, we show that our model outperforms, in terms of the F -measure, sentiment and text classification approaches and is at par with the human annotators. We further use our model to analyze the preference changes over the course of the election campaign and report results that would be difficult to attain by human annotators.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-014-0193-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Candidates ; Computer Science ; Data Mining and Knowledge Discovery ; Discourse analysis ; Economics ; Elections ; Game Theory ; Humanities ; Law ; Methodology of the Social Sciences ; Methods ; Negative campaigning ; Original Article ; Political advertising ; Political campaigns ; Political parties ; Prediction models ; Preferences ; Social and Behav. Sciences ; Social networks ; Statistics for Social Sciences</subject><ispartof>Social network analysis and mining, 2014-12, Vol.4 (1), p.193, Article 193</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>Springer-Verlag Wien 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3da45ac3f919d9cf81bb2a5dcd69260d36781f33b812c858afa5f2c9fb2102c3</citedby><cites>FETCH-LOGICAL-c316t-3da45ac3f919d9cf81bb2a5dcd69260d36781f33b812c858afa5f2c9fb2102c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13278-014-0193-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919612144?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Makazhanov, Aibek</creatorcontrib><creatorcontrib>Rafiei, Davood</creatorcontrib><creatorcontrib>Waqar, Muhammad</creatorcontrib><title>Predicting political preference of Twitter users</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>We study the problem of predicting the political preference of users on the Twitter network, showing that the political preference of users can be predicted from their Twitter behavior towards political parties. We show this by building prediction models based on a variety of contextual and behavioral features, training the models by resorting to a distant supervision approach and considering party candidates to have a predefined preference towards their respective parties. A language model for each party is learned from the content of the tweets by the party candidates, and the preference of a user is assessed based on the alignment of user tweets with the language models of the parties. We evaluate our work in the context of two real elections: 2012 Albertan and 2013 Pakistani general elections. In both cases, we show that our model outperforms, in terms of the F -measure, sentiment and text classification approaches and is at par with the human annotators. We further use our model to analyze the preference changes over the course of the election campaign and report results that would be difficult to attain by human annotators.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Candidates</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Discourse analysis</subject><subject>Economics</subject><subject>Elections</subject><subject>Game Theory</subject><subject>Humanities</subject><subject>Law</subject><subject>Methodology of the Social Sciences</subject><subject>Methods</subject><subject>Negative campaigning</subject><subject>Original Article</subject><subject>Political advertising</subject><subject>Political campaigns</subject><subject>Political parties</subject><subject>Prediction models</subject><subject>Preferences</subject><subject>Social and Behav. Sciences</subject><subject>Social networks</subject><subject>Statistics for Social Sciences</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouKz7AbwVPFdnkiZNjrL4Dxb00HtI02TpsrY1SRG_vVkqevIwzBzee_P4EXKNcIsA9V1ERmtZAlZ5FCv5GVmhFKrklVDnvzeHS7KJ8QAACIwpECsCb8F1vU39sC-m8din3ppjMQXnXXCDdcXoi-azT8mFYo4uxCty4c0xus3PXpPm8aHZPpe716eX7f2utAxFKllnKm4s8wpVp6yX2LbU8M52QlEBHRO1RM9YK5FayaXxhntqlW8pArVsTW6W2CmMH7OLSR_GOQz5o6Y5UiDFqsoqXFQ2jDHm0noK_bsJXxpBn9DoBY3OaPQJjebZQxdPzNph78Jf8v-mbxNiZYo</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Makazhanov, Aibek</creator><creator>Rafiei, Davood</creator><creator>Waqar, Muhammad</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>Predicting political preference of Twitter users</title><author>Makazhanov, Aibek ; Rafiei, Davood ; Waqar, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3da45ac3f919d9cf81bb2a5dcd69260d36781f33b812c858afa5f2c9fb2102c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Candidates</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Discourse analysis</topic><topic>Economics</topic><topic>Elections</topic><topic>Game Theory</topic><topic>Humanities</topic><topic>Law</topic><topic>Methodology of the Social Sciences</topic><topic>Methods</topic><topic>Negative campaigning</topic><topic>Original Article</topic><topic>Political advertising</topic><topic>Political campaigns</topic><topic>Political parties</topic><topic>Prediction models</topic><topic>Preferences</topic><topic>Social and Behav. Sciences</topic><topic>Social networks</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makazhanov, Aibek</creatorcontrib><creatorcontrib>Rafiei, Davood</creatorcontrib><creatorcontrib>Waqar, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makazhanov, Aibek</au><au>Rafiei, Davood</au><au>Waqar, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting political preference of Twitter users</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>193</spage><pages>193-</pages><artnum>193</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>We study the problem of predicting the political preference of users on the Twitter network, showing that the political preference of users can be predicted from their Twitter behavior towards political parties. We show this by building prediction models based on a variety of contextual and behavioral features, training the models by resorting to a distant supervision approach and considering party candidates to have a predefined preference towards their respective parties. A language model for each party is learned from the content of the tweets by the party candidates, and the preference of a user is assessed based on the alignment of user tweets with the language models of the parties. We evaluate our work in the context of two real elections: 2012 Albertan and 2013 Pakistani general elections. In both cases, we show that our model outperforms, in terms of the F -measure, sentiment and text classification approaches and is at par with the human annotators. We further use our model to analyze the preference changes over the course of the election campaign and report results that would be difficult to attain by human annotators.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-014-0193-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2014-12, Vol.4 (1), p.193, Article 193
issn 1869-5450
1869-5469
language eng
recordid cdi_proquest_journals_2919612144
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applications of Graph Theory and Complex Networks
Candidates
Computer Science
Data Mining and Knowledge Discovery
Discourse analysis
Economics
Elections
Game Theory
Humanities
Law
Methodology of the Social Sciences
Methods
Negative campaigning
Original Article
Political advertising
Political campaigns
Political parties
Prediction models
Preferences
Social and Behav. Sciences
Social networks
Statistics for Social Sciences
title Predicting political preference of Twitter users
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20political%20preference%20of%20Twitter%20users&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Makazhanov,%20Aibek&rft.date=2014-12-01&rft.volume=4&rft.issue=1&rft.spage=193&rft.pages=193-&rft.artnum=193&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-014-0193-5&rft_dat=%3Cproquest_cross%3E2919612144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919612144&rft_id=info:pmid/&rfr_iscdi=true