Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica
Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat tra...
Gespeichert in:
Veröffentlicht in: | SILICON 2021-09, Vol.13 (9), p.3163-3176 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3176 |
---|---|
container_issue | 9 |
container_start_page | 3163 |
container_title | SILICON |
container_volume | 13 |
creator | Pan, Pengfei Song, Huawei Yang, Zuohui Ren, Guoqi Xiao, Junfeng Chen, Xiao Xu, Jianfeng |
description | Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica. |
doi_str_mv | 10.1007/s12633-020-00667-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919612104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919612104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJss1ujqW0KlQ8WMGDELLZ2TZlu1uTLdj-elNX9GYuM5m8b3h5hFwzuGUA2V1gXApBgQMFkDKjxzMyYHkmqVIsP__t4e2SjELYQDyCZ7lUA_K-XKPfmjqZO6zL5KktsXbNKjFNmcw-d-jdFpsuvk8aUx-CC4lrkoUJ6OkkxGuHETJ27ZoT1VbJfB_i6MXVzporclGZOuDopw7J63y2nD7QxfP943SyoFYw1dEUCm4MGLRKcFNGz1XJs3G0iFLw2IqMqwLyAsVYcZYXmS1TrGyqJANRSDEkN_3enW8_9hg6vWn3PhoOmisWVZxBGlW8V1nfhuCx0rv4O-MPmoE-Ban7IHUMUn8HqY8REj0UorhZof9b_Q_1BRPWdcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919612104</pqid></control><display><type>article</type><title>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</title><source>SpringerLink Journals (MCLS)</source><source>ProQuest Central</source><creator>Pan, Pengfei ; Song, Huawei ; Yang, Zuohui ; Ren, Guoqi ; Xiao, Junfeng ; Chen, Xiao ; Xu, Jianfeng</creator><creatorcontrib>Pan, Pengfei ; Song, Huawei ; Yang, Zuohui ; Ren, Guoqi ; Xiao, Junfeng ; Chen, Xiao ; Xu, Jianfeng</creatorcontrib><description>Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-020-00667-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace industry ; Brittle materials ; Chemistry ; Chemistry and Materials Science ; Cutting force ; Cutting parameters ; Environmental Chemistry ; Feed rate ; Finite element method ; Fused silica ; Heating ; Inorganic Chemistry ; Lasers ; Machinability ; Machining ; Materials Science ; Mathematical models ; Optical Devices ; Optics ; Original Paper ; Photonics ; Polymer Sciences ; Surface roughness ; Temperature distribution ; Thermal analysis ; Transient heat transfer ; Workpieces</subject><ispartof>SILICON, 2021-09, Vol.13 (9), p.3163-3176</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</citedby><cites>FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</cites><orcidid>0000-0002-9555-5329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-020-00667-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919612104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Pan, Pengfei</creatorcontrib><creatorcontrib>Song, Huawei</creatorcontrib><creatorcontrib>Yang, Zuohui</creatorcontrib><creatorcontrib>Ren, Guoqi</creatorcontrib><creatorcontrib>Xiao, Junfeng</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><title>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</title><title>SILICON</title><addtitle>Silicon</addtitle><description>Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica.</description><subject>Aerospace industry</subject><subject>Brittle materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Environmental Chemistry</subject><subject>Feed rate</subject><subject>Finite element method</subject><subject>Fused silica</subject><subject>Heating</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Machinability</subject><subject>Machining</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Surface roughness</subject><subject>Temperature distribution</subject><subject>Thermal analysis</subject><subject>Transient heat transfer</subject><subject>Workpieces</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJss1ujqW0KlQ8WMGDELLZ2TZlu1uTLdj-elNX9GYuM5m8b3h5hFwzuGUA2V1gXApBgQMFkDKjxzMyYHkmqVIsP__t4e2SjELYQDyCZ7lUA_K-XKPfmjqZO6zL5KktsXbNKjFNmcw-d-jdFpsuvk8aUx-CC4lrkoUJ6OkkxGuHETJ27ZoT1VbJfB_i6MXVzporclGZOuDopw7J63y2nD7QxfP943SyoFYw1dEUCm4MGLRKcFNGz1XJs3G0iFLw2IqMqwLyAsVYcZYXmS1TrGyqJANRSDEkN_3enW8_9hg6vWn3PhoOmisWVZxBGlW8V1nfhuCx0rv4O-MPmoE-Ban7IHUMUn8HqY8REj0UorhZof9b_Q_1BRPWdcI</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pan, Pengfei</creator><creator>Song, Huawei</creator><creator>Yang, Zuohui</creator><creator>Ren, Guoqi</creator><creator>Xiao, Junfeng</creator><creator>Chen, Xiao</creator><creator>Xu, Jianfeng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9555-5329</orcidid></search><sort><creationdate>20210901</creationdate><title>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</title><author>Pan, Pengfei ; Song, Huawei ; Yang, Zuohui ; Ren, Guoqi ; Xiao, Junfeng ; Chen, Xiao ; Xu, Jianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace industry</topic><topic>Brittle materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Environmental Chemistry</topic><topic>Feed rate</topic><topic>Finite element method</topic><topic>Fused silica</topic><topic>Heating</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Machinability</topic><topic>Machining</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Surface roughness</topic><topic>Temperature distribution</topic><topic>Thermal analysis</topic><topic>Transient heat transfer</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Pengfei</creatorcontrib><creatorcontrib>Song, Huawei</creatorcontrib><creatorcontrib>Yang, Zuohui</creatorcontrib><creatorcontrib>Ren, Guoqi</creatorcontrib><creatorcontrib>Xiao, Junfeng</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Pengfei</au><au>Song, Huawei</au><au>Yang, Zuohui</au><au>Ren, Guoqi</au><au>Xiao, Junfeng</au><au>Chen, Xiao</au><au>Xu, Jianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>9</issue><spage>3163</spage><epage>3176</epage><pages>3163-3176</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-020-00667-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9555-5329</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2021-09, Vol.13 (9), p.3163-3176 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_2919612104 |
source | SpringerLink Journals (MCLS); ProQuest Central |
subjects | Aerospace industry Brittle materials Chemistry Chemistry and Materials Science Cutting force Cutting parameters Environmental Chemistry Feed rate Finite element method Fused silica Heating Inorganic Chemistry Lasers Machinability Machining Materials Science Mathematical models Optical Devices Optics Original Paper Photonics Polymer Sciences Surface roughness Temperature distribution Thermal analysis Transient heat transfer Workpieces |
title | Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Field%20Modeling%20and%20Experimental%20Analysis%20in%20Laser-Assisted%20Machining%20of%20Fused%20Silica&rft.jtitle=SILICON&rft.au=Pan,%20Pengfei&rft.date=2021-09-01&rft.volume=13&rft.issue=9&rft.spage=3163&rft.epage=3176&rft.pages=3163-3176&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-020-00667-z&rft_dat=%3Cproquest_cross%3E2919612104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919612104&rft_id=info:pmid/&rfr_iscdi=true |