Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica

Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2021-09, Vol.13 (9), p.3163-3176
Hauptverfasser: Pan, Pengfei, Song, Huawei, Yang, Zuohui, Ren, Guoqi, Xiao, Junfeng, Chen, Xiao, Xu, Jianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3176
container_issue 9
container_start_page 3163
container_title SILICON
container_volume 13
creator Pan, Pengfei
Song, Huawei
Yang, Zuohui
Ren, Guoqi
Xiao, Junfeng
Chen, Xiao
Xu, Jianfeng
description Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica.
doi_str_mv 10.1007/s12633-020-00667-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919612104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919612104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJss1ujqW0KlQ8WMGDELLZ2TZlu1uTLdj-elNX9GYuM5m8b3h5hFwzuGUA2V1gXApBgQMFkDKjxzMyYHkmqVIsP__t4e2SjELYQDyCZ7lUA_K-XKPfmjqZO6zL5KktsXbNKjFNmcw-d-jdFpsuvk8aUx-CC4lrkoUJ6OkkxGuHETJ27ZoT1VbJfB_i6MXVzporclGZOuDopw7J63y2nD7QxfP943SyoFYw1dEUCm4MGLRKcFNGz1XJs3G0iFLw2IqMqwLyAsVYcZYXmS1TrGyqJANRSDEkN_3enW8_9hg6vWn3PhoOmisWVZxBGlW8V1nfhuCx0rv4O-MPmoE-Ban7IHUMUn8HqY8REj0UorhZof9b_Q_1BRPWdcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919612104</pqid></control><display><type>article</type><title>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</title><source>SpringerLink Journals (MCLS)</source><source>ProQuest Central</source><creator>Pan, Pengfei ; Song, Huawei ; Yang, Zuohui ; Ren, Guoqi ; Xiao, Junfeng ; Chen, Xiao ; Xu, Jianfeng</creator><creatorcontrib>Pan, Pengfei ; Song, Huawei ; Yang, Zuohui ; Ren, Guoqi ; Xiao, Junfeng ; Chen, Xiao ; Xu, Jianfeng</creatorcontrib><description>Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-020-00667-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace industry ; Brittle materials ; Chemistry ; Chemistry and Materials Science ; Cutting force ; Cutting parameters ; Environmental Chemistry ; Feed rate ; Finite element method ; Fused silica ; Heating ; Inorganic Chemistry ; Lasers ; Machinability ; Machining ; Materials Science ; Mathematical models ; Optical Devices ; Optics ; Original Paper ; Photonics ; Polymer Sciences ; Surface roughness ; Temperature distribution ; Thermal analysis ; Transient heat transfer ; Workpieces</subject><ispartof>SILICON, 2021-09, Vol.13 (9), p.3163-3176</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</citedby><cites>FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</cites><orcidid>0000-0002-9555-5329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-020-00667-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919612104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Pan, Pengfei</creatorcontrib><creatorcontrib>Song, Huawei</creatorcontrib><creatorcontrib>Yang, Zuohui</creatorcontrib><creatorcontrib>Ren, Guoqi</creatorcontrib><creatorcontrib>Xiao, Junfeng</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><title>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</title><title>SILICON</title><addtitle>Silicon</addtitle><description>Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica.</description><subject>Aerospace industry</subject><subject>Brittle materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Environmental Chemistry</subject><subject>Feed rate</subject><subject>Finite element method</subject><subject>Fused silica</subject><subject>Heating</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Machinability</subject><subject>Machining</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Surface roughness</subject><subject>Temperature distribution</subject><subject>Thermal analysis</subject><subject>Transient heat transfer</subject><subject>Workpieces</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJss1ujqW0KlQ8WMGDELLZ2TZlu1uTLdj-elNX9GYuM5m8b3h5hFwzuGUA2V1gXApBgQMFkDKjxzMyYHkmqVIsP__t4e2SjELYQDyCZ7lUA_K-XKPfmjqZO6zL5KktsXbNKjFNmcw-d-jdFpsuvk8aUx-CC4lrkoUJ6OkkxGuHETJ27ZoT1VbJfB_i6MXVzporclGZOuDopw7J63y2nD7QxfP943SyoFYw1dEUCm4MGLRKcFNGz1XJs3G0iFLw2IqMqwLyAsVYcZYXmS1TrGyqJANRSDEkN_3enW8_9hg6vWn3PhoOmisWVZxBGlW8V1nfhuCx0rv4O-MPmoE-Ban7IHUMUn8HqY8REj0UorhZof9b_Q_1BRPWdcI</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pan, Pengfei</creator><creator>Song, Huawei</creator><creator>Yang, Zuohui</creator><creator>Ren, Guoqi</creator><creator>Xiao, Junfeng</creator><creator>Chen, Xiao</creator><creator>Xu, Jianfeng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9555-5329</orcidid></search><sort><creationdate>20210901</creationdate><title>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</title><author>Pan, Pengfei ; Song, Huawei ; Yang, Zuohui ; Ren, Guoqi ; Xiao, Junfeng ; Chen, Xiao ; Xu, Jianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-40b2aa0aec932ad918fd275327e632d273729b08be359218b7cd4efc496103b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace industry</topic><topic>Brittle materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Environmental Chemistry</topic><topic>Feed rate</topic><topic>Finite element method</topic><topic>Fused silica</topic><topic>Heating</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Machinability</topic><topic>Machining</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Surface roughness</topic><topic>Temperature distribution</topic><topic>Thermal analysis</topic><topic>Transient heat transfer</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Pengfei</creatorcontrib><creatorcontrib>Song, Huawei</creatorcontrib><creatorcontrib>Yang, Zuohui</creatorcontrib><creatorcontrib>Ren, Guoqi</creatorcontrib><creatorcontrib>Xiao, Junfeng</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Pengfei</au><au>Song, Huawei</au><au>Yang, Zuohui</au><au>Ren, Guoqi</au><au>Xiao, Junfeng</au><au>Chen, Xiao</au><au>Xu, Jianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>9</issue><spage>3163</spage><epage>3176</epage><pages>3163-3176</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>Fused silica, a high-strength brittle material, is widely used in optical, aerospace, and laser industries. However, a high-efficiency and high-quality machining method for fused silica is widespread demand in the industry. In this paper, based on the three-dimensional cylindrical transient heat transfer model and cutting experiments, the cutting performance of fused silica in laser-assisted machining (LAM) is studied. The finite element method is adopted to simulate the temperature field in the LAM of fused silica, and the temperature distribution of the workpiece surface is obtained. The results show that the material softens sufficiently under high laser power, low feed rate, low rotational speed, and preheating process. The verification experiments were then performed based on the range of parameters selected from the thermal model analysis. The cutting performance with different parameter combinations was compared, such as cutting force, surface roughness, machined surface integrity, and chip morphology. The results show that the smaller surface roughness, the lower cutting force, the smoother surface topography, and the large-size semi-continuous chips are obtained under the optimal combination of parameters, further demonstrating that the thermal model can provide a practical guide to improve the machinability of fused silica.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-020-00667-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9555-5329</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2021-09, Vol.13 (9), p.3163-3176
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2919612104
source SpringerLink Journals (MCLS); ProQuest Central
subjects Aerospace industry
Brittle materials
Chemistry
Chemistry and Materials Science
Cutting force
Cutting parameters
Environmental Chemistry
Feed rate
Finite element method
Fused silica
Heating
Inorganic Chemistry
Lasers
Machinability
Machining
Materials Science
Mathematical models
Optical Devices
Optics
Original Paper
Photonics
Polymer Sciences
Surface roughness
Temperature distribution
Thermal analysis
Transient heat transfer
Workpieces
title Thermal Field Modeling and Experimental Analysis in Laser-Assisted Machining of Fused Silica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Field%20Modeling%20and%20Experimental%20Analysis%20in%20Laser-Assisted%20Machining%20of%20Fused%20Silica&rft.jtitle=SILICON&rft.au=Pan,%20Pengfei&rft.date=2021-09-01&rft.volume=13&rft.issue=9&rft.spage=3163&rft.epage=3176&rft.pages=3163-3176&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-020-00667-z&rft_dat=%3Cproquest_cross%3E2919612104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919612104&rft_id=info:pmid/&rfr_iscdi=true