Numerical simulation for treatment of dispersive shallow water waves with Rosenau-KdV equation

. In this paper, numerical solutions for the Rosenau-Korteweg-de Vries equation are studied by using the subdomain method based on the sextic B-spline basis functions. Numerical results for five test problems including the motion of single solitary wave, interaction of two and three well-separated s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2016-10, Vol.131 (10), p.356, Article 356
Hauptverfasser: Ak, Turgut, Battal Gazi Karakoc, S., Triki, Houria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 356
container_title European physical journal plus
container_volume 131
creator Ak, Turgut
Battal Gazi Karakoc, S.
Triki, Houria
description . In this paper, numerical solutions for the Rosenau-Korteweg-de Vries equation are studied by using the subdomain method based on the sextic B-spline basis functions. Numerical results for five test problems including the motion of single solitary wave, interaction of two and three well-separated solitary waves of different amplitudes, evolution of solitons with Gaussian and undular bore initial conditions are obtained. Stability and a priori error estimate of the scheme are discussed. A comparison of the values of the obtained invariants and error norms for single solitary wave with earlier results is also made. The results show that the present method is efficient and reliable.
doi_str_mv 10.1140/epjp/i2016-16356-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919612016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919612016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-84cb61329064d150b734e2f5bfc112449b0ca313a4e36b145c2d90a6cc39a19d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59XMJhvNUYpfWBREPRqy2Vmbst1sk2yL_95tK-jJOczM4f2Ah5BTYOcAgl1gt-guXM5AZiB5ITN-QEY5KJYVQojDP_8xmcS4YMMIBUKJEfl46pcYnDUNjW7ZNyY539LaB5oCmrTENlFf08rFDkN0a6RxbprGb-jGJAzDXmOkG5fm9MVHbE2fPVbvFFf9LumEHNWmiTj5uWPydnvzOr3PZs93D9PrWWY5qJRdCVtK4LliUlRQsPKSC8zroqwtQC6EKpk1HLgRyGUJorB5pZiR1nJlQFV8TM72uV3wqx5j0gvfh3ao1LkCJWFLZ1Dle5UNPsaAte6CW5rwpYHpLUq9Ral3KPUOpeaDie9NcRC3nxh-o_9xfQOt4Xl9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919612016</pqid></control><display><type>article</type><title>Numerical simulation for treatment of dispersive shallow water waves with Rosenau-KdV equation</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ak, Turgut ; Battal Gazi Karakoc, S. ; Triki, Houria</creator><creatorcontrib>Ak, Turgut ; Battal Gazi Karakoc, S. ; Triki, Houria</creatorcontrib><description>. In this paper, numerical solutions for the Rosenau-Korteweg-de Vries equation are studied by using the subdomain method based on the sextic B-spline basis functions. Numerical results for five test problems including the motion of single solitary wave, interaction of two and three well-separated solitary waves of different amplitudes, evolution of solitons with Gaussian and undular bore initial conditions are obtained. Stability and a priori error estimate of the scheme are discussed. A comparison of the values of the obtained invariants and error norms for single solitary wave with earlier results is also made. The results show that the present method is efficient and reliable.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2016-16356-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; B spline functions ; Basis functions ; Complex Systems ; Condensed Matter Physics ; Initial conditions ; Korteweg-Devries equation ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Shallow water ; Solitary waves ; Theoretical ; Water waves</subject><ispartof>European physical journal plus, 2016-10, Vol.131 (10), p.356, Article 356</ispartof><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-84cb61329064d150b734e2f5bfc112449b0ca313a4e36b145c2d90a6cc39a19d3</citedby><cites>FETCH-LOGICAL-c319t-84cb61329064d150b734e2f5bfc112449b0ca313a4e36b145c2d90a6cc39a19d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2016-16356-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919612016?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ak, Turgut</creatorcontrib><creatorcontrib>Battal Gazi Karakoc, S.</creatorcontrib><creatorcontrib>Triki, Houria</creatorcontrib><title>Numerical simulation for treatment of dispersive shallow water waves with Rosenau-KdV equation</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In this paper, numerical solutions for the Rosenau-Korteweg-de Vries equation are studied by using the subdomain method based on the sextic B-spline basis functions. Numerical results for five test problems including the motion of single solitary wave, interaction of two and three well-separated solitary waves of different amplitudes, evolution of solitons with Gaussian and undular bore initial conditions are obtained. Stability and a priori error estimate of the scheme are discussed. A comparison of the values of the obtained invariants and error norms for single solitary wave with earlier results is also made. The results show that the present method is efficient and reliable.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>B spline functions</subject><subject>Basis functions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Initial conditions</subject><subject>Korteweg-Devries equation</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Shallow water</subject><subject>Solitary waves</subject><subject>Theoretical</subject><subject>Water waves</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59XMJhvNUYpfWBREPRqy2Vmbst1sk2yL_95tK-jJOczM4f2Ah5BTYOcAgl1gt-guXM5AZiB5ITN-QEY5KJYVQojDP_8xmcS4YMMIBUKJEfl46pcYnDUNjW7ZNyY539LaB5oCmrTENlFf08rFDkN0a6RxbprGb-jGJAzDXmOkG5fm9MVHbE2fPVbvFFf9LumEHNWmiTj5uWPydnvzOr3PZs93D9PrWWY5qJRdCVtK4LliUlRQsPKSC8zroqwtQC6EKpk1HLgRyGUJorB5pZiR1nJlQFV8TM72uV3wqx5j0gvfh3ao1LkCJWFLZ1Dle5UNPsaAte6CW5rwpYHpLUq9Ral3KPUOpeaDie9NcRC3nxh-o_9xfQOt4Xl9</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Ak, Turgut</creator><creator>Battal Gazi Karakoc, S.</creator><creator>Triki, Houria</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20161001</creationdate><title>Numerical simulation for treatment of dispersive shallow water waves with Rosenau-KdV equation</title><author>Ak, Turgut ; Battal Gazi Karakoc, S. ; Triki, Houria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-84cb61329064d150b734e2f5bfc112449b0ca313a4e36b145c2d90a6cc39a19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>B spline functions</topic><topic>Basis functions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Initial conditions</topic><topic>Korteweg-Devries equation</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Shallow water</topic><topic>Solitary waves</topic><topic>Theoretical</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ak, Turgut</creatorcontrib><creatorcontrib>Battal Gazi Karakoc, S.</creatorcontrib><creatorcontrib>Triki, Houria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ak, Turgut</au><au>Battal Gazi Karakoc, S.</au><au>Triki, Houria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation for treatment of dispersive shallow water waves with Rosenau-KdV equation</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>131</volume><issue>10</issue><spage>356</spage><pages>356-</pages><artnum>356</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In this paper, numerical solutions for the Rosenau-Korteweg-de Vries equation are studied by using the subdomain method based on the sextic B-spline basis functions. Numerical results for five test problems including the motion of single solitary wave, interaction of two and three well-separated solitary waves of different amplitudes, evolution of solitons with Gaussian and undular bore initial conditions are obtained. Stability and a priori error estimate of the scheme are discussed. A comparison of the values of the obtained invariants and error norms for single solitary wave with earlier results is also made. The results show that the present method is efficient and reliable.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2016-16356-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2016-10, Vol.131 (10), p.356, Article 356
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919612016
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied and Technical Physics
Atomic
B spline functions
Basis functions
Complex Systems
Condensed Matter Physics
Initial conditions
Korteweg-Devries equation
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Shallow water
Solitary waves
Theoretical
Water waves
title Numerical simulation for treatment of dispersive shallow water waves with Rosenau-KdV equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20for%20treatment%20of%20dispersive%20shallow%20water%20waves%20with%20Rosenau-KdV%20equation&rft.jtitle=European%20physical%20journal%20plus&rft.au=Ak,%20Turgut&rft.date=2016-10-01&rft.volume=131&rft.issue=10&rft.spage=356&rft.pages=356-&rft.artnum=356&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2016-16356-3&rft_dat=%3Cproquest_cross%3E2919612016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919612016&rft_id=info:pmid/&rfr_iscdi=true