Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations

. In this article, the influences of critical speed on the free vibration behavior of spinning 3D single-walled carbon nanotubes (SWCNT) are investigated using modified couple stress theory (MCST). Moreover, the surrounding elastic medium of SWCNT has been considered as a model of Winkler, character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2017-01, Vol.132 (1), p.6, Article 6
Hauptverfasser: Barooti, Mohammad Mostafa, Safarpour, Hamed, Ghadiri, Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 6
container_title European physical journal plus
container_volume 132
creator Barooti, Mohammad Mostafa
Safarpour, Hamed
Ghadiri, Majid
description . In this article, the influences of critical speed on the free vibration behavior of spinning 3D single-walled carbon nanotubes (SWCNT) are investigated using modified couple stress theory (MCST). Moreover, the surrounding elastic medium of SWCNT has been considered as a model of Winkler, characterized by the spring. Taking into consideration the first-order shear deformation theory (FSDT), the rotating SWCNT is modeled and its equations of motion are derived using the Hamilton principle. The formulations include Coriolis, centrifugal and initial hoop tension effects due to rotation of the SWCNT. The accuracy of the presented model is validated by some cases in the literature. The novelty of this study is considering the effects of rotation and MCST, in addition to considering the various boundary conditions of SWCNT. The generalized differential quadrature method (GDQM) is used to discretize the model and to approximate the equation of motion. Then investigation has been made on critical speed and natural frequency of the rotating SWCNT due to the influence of initial hoop tension, material length scale parameter, constant of spring, frequency mode number, angular velocity, length-to-radius ratio, radius-to-thickness ratio and boundary conditions.
doi_str_mv 10.1140/epjp/i2017-11275-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919610112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919610112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c30920fdba8ff9a087c83a327bde55376d7be5f4b330b78d657b13fa8e6368383</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKeA57XJJtlsjlL_QsGLnkOyOykpa3ZNdi399qatoCfnMDMMv_dIHkLXlNxSyskShu2w9CWhsqC0lKIQZ2hWUkUKwTk__7NfokVKW5KLK8oVn6HdKvrRN6bDaQBosQktdhEAf3kbzej7kE-m2yefcO8y5EPwYYPZPU55dlDsTNdlYWOizXAwoR8nCwlHSOOBzEfoTN4b7PoptEfTdIUunOkSLH7mHL0_Prytnov169PL6m5dNIyqMXeiSuJaa2rnlCG1bGpmWCltC0IwWbXSgnDcMkasrNtKSEuZMzVUrKpZzebo5uQ7xP5zyk_S236K-UdJl4qqipIcWabKE9XEPqUITg_Rf5i415ToQ8b6kLE-ZqyPGWuRRewkShkOG4i_1v-ovgHNSoLi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919610112</pqid></control><display><type>article</type><title>Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Barooti, Mohammad Mostafa ; Safarpour, Hamed ; Ghadiri, Majid</creator><creatorcontrib>Barooti, Mohammad Mostafa ; Safarpour, Hamed ; Ghadiri, Majid</creatorcontrib><description>. In this article, the influences of critical speed on the free vibration behavior of spinning 3D single-walled carbon nanotubes (SWCNT) are investigated using modified couple stress theory (MCST). Moreover, the surrounding elastic medium of SWCNT has been considered as a model of Winkler, characterized by the spring. Taking into consideration the first-order shear deformation theory (FSDT), the rotating SWCNT is modeled and its equations of motion are derived using the Hamilton principle. The formulations include Coriolis, centrifugal and initial hoop tension effects due to rotation of the SWCNT. The accuracy of the presented model is validated by some cases in the literature. The novelty of this study is considering the effects of rotation and MCST, in addition to considering the various boundary conditions of SWCNT. The generalized differential quadrature method (GDQM) is used to discretize the model and to approximate the equation of motion. Then investigation has been made on critical speed and natural frequency of the rotating SWCNT due to the influence of initial hoop tension, material length scale parameter, constant of spring, frequency mode number, angular velocity, length-to-radius ratio, radius-to-thickness ratio and boundary conditions.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2017-11275-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angular velocity ; Applied and Technical Physics ; Atomic ; Boundary conditions ; Complex Systems ; Condensed Matter Physics ; Elastic media ; Equations of motion ; Free vibration ; Generalized differential quadrature method ; Hamilton's principle ; Hoops ; Mathematical and Computational Physics ; Molecular ; Nanotechnology ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quadratures ; Regular Article ; Resonant frequencies ; Rotation ; Shear deformation ; Single wall carbon nanotubes ; Theoretical ; Thickness ratio ; Vibration analysis</subject><ispartof>European physical journal plus, 2017-01, Vol.132 (1), p.6, Article 6</ispartof><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c30920fdba8ff9a087c83a327bde55376d7be5f4b330b78d657b13fa8e6368383</citedby><cites>FETCH-LOGICAL-c319t-c30920fdba8ff9a087c83a327bde55376d7be5f4b330b78d657b13fa8e6368383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2017-11275-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919610112?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Barooti, Mohammad Mostafa</creatorcontrib><creatorcontrib>Safarpour, Hamed</creatorcontrib><creatorcontrib>Ghadiri, Majid</creatorcontrib><title>Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In this article, the influences of critical speed on the free vibration behavior of spinning 3D single-walled carbon nanotubes (SWCNT) are investigated using modified couple stress theory (MCST). Moreover, the surrounding elastic medium of SWCNT has been considered as a model of Winkler, characterized by the spring. Taking into consideration the first-order shear deformation theory (FSDT), the rotating SWCNT is modeled and its equations of motion are derived using the Hamilton principle. The formulations include Coriolis, centrifugal and initial hoop tension effects due to rotation of the SWCNT. The accuracy of the presented model is validated by some cases in the literature. The novelty of this study is considering the effects of rotation and MCST, in addition to considering the various boundary conditions of SWCNT. The generalized differential quadrature method (GDQM) is used to discretize the model and to approximate the equation of motion. Then investigation has been made on critical speed and natural frequency of the rotating SWCNT due to the influence of initial hoop tension, material length scale parameter, constant of spring, frequency mode number, angular velocity, length-to-radius ratio, radius-to-thickness ratio and boundary conditions.</description><subject>Angular velocity</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Elastic media</subject><subject>Equations of motion</subject><subject>Free vibration</subject><subject>Generalized differential quadrature method</subject><subject>Hamilton's principle</subject><subject>Hoops</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanotechnology</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Regular Article</subject><subject>Resonant frequencies</subject><subject>Rotation</subject><subject>Shear deformation</subject><subject>Single wall carbon nanotubes</subject><subject>Theoretical</subject><subject>Thickness ratio</subject><subject>Vibration analysis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKeA57XJJtlsjlL_QsGLnkOyOykpa3ZNdi399qatoCfnMDMMv_dIHkLXlNxSyskShu2w9CWhsqC0lKIQZ2hWUkUKwTk__7NfokVKW5KLK8oVn6HdKvrRN6bDaQBosQktdhEAf3kbzej7kE-m2yefcO8y5EPwYYPZPU55dlDsTNdlYWOizXAwoR8nCwlHSOOBzEfoTN4b7PoptEfTdIUunOkSLH7mHL0_Prytnov169PL6m5dNIyqMXeiSuJaa2rnlCG1bGpmWCltC0IwWbXSgnDcMkasrNtKSEuZMzVUrKpZzebo5uQ7xP5zyk_S236K-UdJl4qqipIcWabKE9XEPqUITg_Rf5i415ToQ8b6kLE-ZqyPGWuRRewkShkOG4i_1v-ovgHNSoLi</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Barooti, Mohammad Mostafa</creator><creator>Safarpour, Hamed</creator><creator>Ghadiri, Majid</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170101</creationdate><title>Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations</title><author>Barooti, Mohammad Mostafa ; Safarpour, Hamed ; Ghadiri, Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c30920fdba8ff9a087c83a327bde55376d7be5f4b330b78d657b13fa8e6368383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angular velocity</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Elastic media</topic><topic>Equations of motion</topic><topic>Free vibration</topic><topic>Generalized differential quadrature method</topic><topic>Hamilton's principle</topic><topic>Hoops</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanotechnology</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Regular Article</topic><topic>Resonant frequencies</topic><topic>Rotation</topic><topic>Shear deformation</topic><topic>Single wall carbon nanotubes</topic><topic>Theoretical</topic><topic>Thickness ratio</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barooti, Mohammad Mostafa</creatorcontrib><creatorcontrib>Safarpour, Hamed</creatorcontrib><creatorcontrib>Ghadiri, Majid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barooti, Mohammad Mostafa</au><au>Safarpour, Hamed</au><au>Ghadiri, Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>132</volume><issue>1</issue><spage>6</spage><pages>6-</pages><artnum>6</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In this article, the influences of critical speed on the free vibration behavior of spinning 3D single-walled carbon nanotubes (SWCNT) are investigated using modified couple stress theory (MCST). Moreover, the surrounding elastic medium of SWCNT has been considered as a model of Winkler, characterized by the spring. Taking into consideration the first-order shear deformation theory (FSDT), the rotating SWCNT is modeled and its equations of motion are derived using the Hamilton principle. The formulations include Coriolis, centrifugal and initial hoop tension effects due to rotation of the SWCNT. The accuracy of the presented model is validated by some cases in the literature. The novelty of this study is considering the effects of rotation and MCST, in addition to considering the various boundary conditions of SWCNT. The generalized differential quadrature method (GDQM) is used to discretize the model and to approximate the equation of motion. Then investigation has been made on critical speed and natural frequency of the rotating SWCNT due to the influence of initial hoop tension, material length scale parameter, constant of spring, frequency mode number, angular velocity, length-to-radius ratio, radius-to-thickness ratio and boundary conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2017-11275-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2017-01, Vol.132 (1), p.6, Article 6
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919610112
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Angular velocity
Applied and Technical Physics
Atomic
Boundary conditions
Complex Systems
Condensed Matter Physics
Elastic media
Equations of motion
Free vibration
Generalized differential quadrature method
Hamilton's principle
Hoops
Mathematical and Computational Physics
Molecular
Nanotechnology
Optical and Plasma Physics
Physics
Physics and Astronomy
Quadratures
Regular Article
Resonant frequencies
Rotation
Shear deformation
Single wall carbon nanotubes
Theoretical
Thickness ratio
Vibration analysis
title Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20speed%20and%20free%20vibration%20analysis%20of%20spinning%203D%20single-walled%20carbon%20nanotubes%20resting%20on%20elastic%20foundations&rft.jtitle=European%20physical%20journal%20plus&rft.au=Barooti,%20Mohammad%20Mostafa&rft.date=2017-01-01&rft.volume=132&rft.issue=1&rft.spage=6&rft.pages=6-&rft.artnum=6&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2017-11275-5&rft_dat=%3Cproquest_cross%3E2919610112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919610112&rft_id=info:pmid/&rfr_iscdi=true