Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures
Semiconductor photocatalysts have been widely used to catalyse photochemical reactions for the remediation of wastewater contaminated with organic dyes. This study aimed to synthesise and characterise manganese-doped Dy 2 O 3 (Dy 2 O 3 /Mn) nanostructures as possible catalysts with improved photocat...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2023-05, Vol.138 (5), p.398, Article 398 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 398 |
container_title | European physical journal plus |
container_volume | 138 |
creator | Alonizan, N. Madani, M. Omri, K. Abumousa, Rasha A. Alyami, Alanood A. Alqahtani, Mody E. Almarri, H. M. Algrafy, E. M. |
description | Semiconductor photocatalysts have been widely used to catalyse photochemical reactions for the remediation of wastewater contaminated with organic dyes. This study aimed to synthesise and characterise manganese-doped Dy
2
O
3
(Dy
2
O
3
/Mn) nanostructures as possible catalysts with improved photocatalytic properties. A low-cost hydrothermal method was used to fabricate materials with optimal morphological and structural properties. Before characterisation, Dy
2
O
3
/Mn nanostructures were subjected to heat treatments in the range 300–600 °C. X-ray diffraction analysis revealed that all samples exhibited a cubic phase structure; the crystallite size varied between 30.7 and 40.2 nm with the calcination temperature. Scanning electron microscopy, energy-dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to examine the morphology and chemical content of the nanostructures, and the efficacy of the elaboration approach was validated. Diffuse reflectance spectroscopy demonstrated the visible-light absorption of the samples, and the bandgap energy was determined to be approximately 2.9 eV. Methylene blue (MB) dye was used to examine the photocatalytic activity of the Dy
2
O
3
/Mn nanostructures under visible-light irradiation. After 360 min, 92% of MB was degraded. The doping of Dy
2
O
3
with Mn improved both the photocatalytic activity and the overall properties of the catalyst. Therefore, Dy
2
O
3
/Mn nanostructures could replace current catalysts for the degradation of organic dyes in wastewater.
Graphical abstract |
doi_str_mv | 10.1140/epjp/s13360-023-04026-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919606665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919606665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6f3d8896241472b46c8732e98d753ec4a4811bdd511f8cfedc9ff673f660692f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWGp_gwOux-ZrMslS6keFSl3oOqSZxE5pkzHJUObfmzqC7nyb9xbn3gcHgGsEbxGicG66XTePiBAGS4hJCSnErDyegQlGApYVpfT8z30JZjHuYB4qEBV0Al6XQxN82ppwUPsiDi6fsY2Fck3RbX3yWiW1H1Kri84E6zPmtCm8Le4HvCbzF1c45XxModepDyZegQur9tHMfvYUvD8-vC2W5Wr99Ly4W5WaEJpKZknDuWCYIlrjDWWa1wQbwZu6IkZTRTlCm6apELJcW9NoYS2riWUMMoEtmYKbsbcL_rM3Mcmd74PLLyUWSGSKsSpT9Ujp4GMMxsoutAcVBomgPBmUJ4NyNCizQfltUB5zko_JmBPuw4Tf_v-iX8YueK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919606665</pqid></control><display><type>article</type><title>Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Alonizan, N. ; Madani, M. ; Omri, K. ; Abumousa, Rasha A. ; Alyami, Alanood A. ; Alqahtani, Mody E. ; Almarri, H. M. ; Algrafy, E. M.</creator><creatorcontrib>Alonizan, N. ; Madani, M. ; Omri, K. ; Abumousa, Rasha A. ; Alyami, Alanood A. ; Alqahtani, Mody E. ; Almarri, H. M. ; Algrafy, E. M.</creatorcontrib><description>Semiconductor photocatalysts have been widely used to catalyse photochemical reactions for the remediation of wastewater contaminated with organic dyes. This study aimed to synthesise and characterise manganese-doped Dy
2
O
3
(Dy
2
O
3
/Mn) nanostructures as possible catalysts with improved photocatalytic properties. A low-cost hydrothermal method was used to fabricate materials with optimal morphological and structural properties. Before characterisation, Dy
2
O
3
/Mn nanostructures were subjected to heat treatments in the range 300–600 °C. X-ray diffraction analysis revealed that all samples exhibited a cubic phase structure; the crystallite size varied between 30.7 and 40.2 nm with the calcination temperature. Scanning electron microscopy, energy-dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to examine the morphology and chemical content of the nanostructures, and the efficacy of the elaboration approach was validated. Diffuse reflectance spectroscopy demonstrated the visible-light absorption of the samples, and the bandgap energy was determined to be approximately 2.9 eV. Methylene blue (MB) dye was used to examine the photocatalytic activity of the Dy
2
O
3
/Mn nanostructures under visible-light irradiation. After 360 min, 92% of MB was degraded. The doping of Dy
2
O
3
with Mn improved both the photocatalytic activity and the overall properties of the catalyst. Therefore, Dy
2
O
3
/Mn nanostructures could replace current catalysts for the degradation of organic dyes in wastewater.
Graphical abstract</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-04026-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Applied and Technical Physics ; Atomic ; Catalysts ; Catalytic activity ; Chemical elements ; Complex Systems ; Composite materials ; Condensed Matter Physics ; Crystallites ; Diffuse reflectance spectroscopy ; Dyes ; Electromagnetic absorption ; Energy consumption ; Fourier transforms ; Heat ; Heat treatment ; Infrared spectroscopy ; Irradiation ; Light irradiation ; Manganese ; Mathematical and Computational Physics ; Metal oxides ; Methylene blue ; Molecular ; Morphology ; Nanoparticles ; Nanostructure ; Nitrates ; Optical and Plasma Physics ; Optical properties ; Oxidation ; Photocatalysis ; Photochemical reactions ; Photochemicals ; Physics ; Physics and Astronomy ; Regular Article ; Solid phases ; Spectrum analysis ; Structural analysis ; Temperature ; Theoretical ; Wastewater pollution ; Wastewater treatment ; X-ray diffraction</subject><ispartof>European physical journal plus, 2023-05, Vol.138 (5), p.398, Article 398</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6f3d8896241472b46c8732e98d753ec4a4811bdd511f8cfedc9ff673f660692f3</citedby><cites>FETCH-LOGICAL-c334t-6f3d8896241472b46c8732e98d753ec4a4811bdd511f8cfedc9ff673f660692f3</cites><orcidid>0000-0001-5371-8436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04026-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919606665?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Alonizan, N.</creatorcontrib><creatorcontrib>Madani, M.</creatorcontrib><creatorcontrib>Omri, K.</creatorcontrib><creatorcontrib>Abumousa, Rasha A.</creatorcontrib><creatorcontrib>Alyami, Alanood A.</creatorcontrib><creatorcontrib>Alqahtani, Mody E.</creatorcontrib><creatorcontrib>Almarri, H. M.</creatorcontrib><creatorcontrib>Algrafy, E. M.</creatorcontrib><title>Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Semiconductor photocatalysts have been widely used to catalyse photochemical reactions for the remediation of wastewater contaminated with organic dyes. This study aimed to synthesise and characterise manganese-doped Dy
2
O
3
(Dy
2
O
3
/Mn) nanostructures as possible catalysts with improved photocatalytic properties. A low-cost hydrothermal method was used to fabricate materials with optimal morphological and structural properties. Before characterisation, Dy
2
O
3
/Mn nanostructures were subjected to heat treatments in the range 300–600 °C. X-ray diffraction analysis revealed that all samples exhibited a cubic phase structure; the crystallite size varied between 30.7 and 40.2 nm with the calcination temperature. Scanning electron microscopy, energy-dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to examine the morphology and chemical content of the nanostructures, and the efficacy of the elaboration approach was validated. Diffuse reflectance spectroscopy demonstrated the visible-light absorption of the samples, and the bandgap energy was determined to be approximately 2.9 eV. Methylene blue (MB) dye was used to examine the photocatalytic activity of the Dy
2
O
3
/Mn nanostructures under visible-light irradiation. After 360 min, 92% of MB was degraded. The doping of Dy
2
O
3
with Mn improved both the photocatalytic activity and the overall properties of the catalyst. Therefore, Dy
2
O
3
/Mn nanostructures could replace current catalysts for the degradation of organic dyes in wastewater.
Graphical abstract</description><subject>Adsorption</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical elements</subject><subject>Complex Systems</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Crystallites</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Dyes</subject><subject>Electromagnetic absorption</subject><subject>Energy consumption</subject><subject>Fourier transforms</subject><subject>Heat</subject><subject>Heat treatment</subject><subject>Infrared spectroscopy</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Manganese</subject><subject>Mathematical and Computational Physics</subject><subject>Metal oxides</subject><subject>Methylene blue</subject><subject>Molecular</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nitrates</subject><subject>Optical and Plasma Physics</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Solid phases</subject><subject>Spectrum analysis</subject><subject>Structural analysis</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Wastewater pollution</subject><subject>Wastewater treatment</subject><subject>X-ray diffraction</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LAzEURYMoWGp_gwOux-ZrMslS6keFSl3oOqSZxE5pkzHJUObfmzqC7nyb9xbn3gcHgGsEbxGicG66XTePiBAGS4hJCSnErDyegQlGApYVpfT8z30JZjHuYB4qEBV0Al6XQxN82ppwUPsiDi6fsY2Fck3RbX3yWiW1H1Kri84E6zPmtCm8Le4HvCbzF1c45XxModepDyZegQur9tHMfvYUvD8-vC2W5Wr99Ly4W5WaEJpKZknDuWCYIlrjDWWa1wQbwZu6IkZTRTlCm6apELJcW9NoYS2riWUMMoEtmYKbsbcL_rM3Mcmd74PLLyUWSGSKsSpT9Ujp4GMMxsoutAcVBomgPBmUJ4NyNCizQfltUB5zko_JmBPuw4Tf_v-iX8YueK0</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Alonizan, N.</creator><creator>Madani, M.</creator><creator>Omri, K.</creator><creator>Abumousa, Rasha A.</creator><creator>Alyami, Alanood A.</creator><creator>Alqahtani, Mody E.</creator><creator>Almarri, H. M.</creator><creator>Algrafy, E. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5371-8436</orcidid></search><sort><creationdate>20230509</creationdate><title>Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures</title><author>Alonizan, N. ; Madani, M. ; Omri, K. ; Abumousa, Rasha A. ; Alyami, Alanood A. ; Alqahtani, Mody E. ; Almarri, H. M. ; Algrafy, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6f3d8896241472b46c8732e98d753ec4a4811bdd511f8cfedc9ff673f660692f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical elements</topic><topic>Complex Systems</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Crystallites</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Dyes</topic><topic>Electromagnetic absorption</topic><topic>Energy consumption</topic><topic>Fourier transforms</topic><topic>Heat</topic><topic>Heat treatment</topic><topic>Infrared spectroscopy</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Manganese</topic><topic>Mathematical and Computational Physics</topic><topic>Metal oxides</topic><topic>Methylene blue</topic><topic>Molecular</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nitrates</topic><topic>Optical and Plasma Physics</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Solid phases</topic><topic>Spectrum analysis</topic><topic>Structural analysis</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Wastewater pollution</topic><topic>Wastewater treatment</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonizan, N.</creatorcontrib><creatorcontrib>Madani, M.</creatorcontrib><creatorcontrib>Omri, K.</creatorcontrib><creatorcontrib>Abumousa, Rasha A.</creatorcontrib><creatorcontrib>Alyami, Alanood A.</creatorcontrib><creatorcontrib>Alqahtani, Mody E.</creatorcontrib><creatorcontrib>Almarri, H. M.</creatorcontrib><creatorcontrib>Algrafy, E. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonizan, N.</au><au>Madani, M.</au><au>Omri, K.</au><au>Abumousa, Rasha A.</au><au>Alyami, Alanood A.</au><au>Alqahtani, Mody E.</au><au>Almarri, H. M.</au><au>Algrafy, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-05-09</date><risdate>2023</risdate><volume>138</volume><issue>5</issue><spage>398</spage><pages>398-</pages><artnum>398</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Semiconductor photocatalysts have been widely used to catalyse photochemical reactions for the remediation of wastewater contaminated with organic dyes. This study aimed to synthesise and characterise manganese-doped Dy
2
O
3
(Dy
2
O
3
/Mn) nanostructures as possible catalysts with improved photocatalytic properties. A low-cost hydrothermal method was used to fabricate materials with optimal morphological and structural properties. Before characterisation, Dy
2
O
3
/Mn nanostructures were subjected to heat treatments in the range 300–600 °C. X-ray diffraction analysis revealed that all samples exhibited a cubic phase structure; the crystallite size varied between 30.7 and 40.2 nm with the calcination temperature. Scanning electron microscopy, energy-dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to examine the morphology and chemical content of the nanostructures, and the efficacy of the elaboration approach was validated. Diffuse reflectance spectroscopy demonstrated the visible-light absorption of the samples, and the bandgap energy was determined to be approximately 2.9 eV. Methylene blue (MB) dye was used to examine the photocatalytic activity of the Dy
2
O
3
/Mn nanostructures under visible-light irradiation. After 360 min, 92% of MB was degraded. The doping of Dy
2
O
3
with Mn improved both the photocatalytic activity and the overall properties of the catalyst. Therefore, Dy
2
O
3
/Mn nanostructures could replace current catalysts for the degradation of organic dyes in wastewater.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-04026-w</doi><orcidid>https://orcid.org/0000-0001-5371-8436</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2023-05, Vol.138 (5), p.398, Article 398 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919606665 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Adsorption Applied and Technical Physics Atomic Catalysts Catalytic activity Chemical elements Complex Systems Composite materials Condensed Matter Physics Crystallites Diffuse reflectance spectroscopy Dyes Electromagnetic absorption Energy consumption Fourier transforms Heat Heat treatment Infrared spectroscopy Irradiation Light irradiation Manganese Mathematical and Computational Physics Metal oxides Methylene blue Molecular Morphology Nanoparticles Nanostructure Nitrates Optical and Plasma Physics Optical properties Oxidation Photocatalysis Photochemical reactions Photochemicals Physics Physics and Astronomy Regular Article Solid phases Spectrum analysis Structural analysis Temperature Theoretical Wastewater pollution Wastewater treatment X-ray diffraction |
title | Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis%20and%20photocatalytic%20performance%20of%20Dy2O3/Mn%20nanostructures&rft.jtitle=European%20physical%20journal%20plus&rft.au=Alonizan,%20N.&rft.date=2023-05-09&rft.volume=138&rft.issue=5&rft.spage=398&rft.pages=398-&rft.artnum=398&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-04026-w&rft_dat=%3Cproquest_cross%3E2919606665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919606665&rft_id=info:pmid/&rfr_iscdi=true |