A Twin Multi-Class Classification Support Vector Machine
Twin support vector machine (TSVM) is a novel machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems rather than a single large one. Classical TSVM is proposed for the bin...
Gespeichert in:
Veröffentlicht in: | Cognitive computation 2013-12, Vol.5 (4), p.580-588 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | 4 |
container_start_page | 580 |
container_title | Cognitive computation |
container_volume | 5 |
creator | Xu, Yitian Guo, Rui Wang, Laisheng |
description | Twin support vector machine (TSVM) is a novel machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems rather than a single large one. Classical TSVM is proposed for the binary classification problem. However, multi-class classification problem is often met in our real world. For this problem, a new multi-class classification algorithm, called Twin-KSVC, is proposed in this paper. It takes the advantages of both TSVM and K-SVCR (support vector classification-regression machine for
k
-class classification) and evaluates all the training points into a “1-versus-1-versus-rest” structure, so it generates ternary outputs { −1, 0, +1}. As all the samples are utilized in constructing the classification hyper-plane, our proposed algorithm yields higher classification accuracy in comparison with other two algorithms. Experimental results on eleven benchmark datasets demonstrate the feasibility and validity of our proposed algorithm. |
doi_str_mv | 10.1007/s12559-012-9179-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919606594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919606594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a657a2a5588e48d4b34148ae9f819030ccb8333908a486be37be14b93c261afa3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FM_jU5LkVdYRcPrl5DGlPNUtuatIjf3taKnrzMzOG9N7wfQudALoGQ_CoBFUJjAhRryDXOD9AClJRYa8kPf28hj9FJSntCpNCCLpBaZbuP0GTboe4DLmqbUvY9QxWc7UPbZA9D17Wxz56869uYba17DY0_RUeVrZM_-9lL9HhzvSvWeHN_e1esNtgxkD22UuSWWiGU8lw985Jx4Mp6XSnQhBHnSsUY00RZrmTpWV564KVmjkqwlWVLdDHndrF9H3zqzb4dYjO-NFSDllMRPqpgVrnYphR9ZboY3mz8NEDMBMjMgMwIyEyATD566OxJo7Z58fEv-X_TFyfJZuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919606594</pqid></control><display><type>article</type><title>A Twin Multi-Class Classification Support Vector Machine</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Xu, Yitian ; Guo, Rui ; Wang, Laisheng</creator><creatorcontrib>Xu, Yitian ; Guo, Rui ; Wang, Laisheng</creatorcontrib><description>Twin support vector machine (TSVM) is a novel machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems rather than a single large one. Classical TSVM is proposed for the binary classification problem. However, multi-class classification problem is often met in our real world. For this problem, a new multi-class classification algorithm, called Twin-KSVC, is proposed in this paper. It takes the advantages of both TSVM and K-SVCR (support vector classification-regression machine for
k
-class classification) and evaluates all the training points into a “1-versus-1-versus-rest” structure, so it generates ternary outputs { −1, 0, +1}. As all the samples are utilized in constructing the classification hyper-plane, our proposed algorithm yields higher classification accuracy in comparison with other two algorithms. Experimental results on eleven benchmark datasets demonstrate the feasibility and validity of our proposed algorithm.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-012-9179-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Biomedical and Life Sciences ; Biomedicine ; Classification ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Machine learning ; Neurosciences ; Quadratic programming ; Support vector machines</subject><ispartof>Cognitive computation, 2013-12, Vol.5 (4), p.580-588</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media, LLC 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a657a2a5588e48d4b34148ae9f819030ccb8333908a486be37be14b93c261afa3</citedby><cites>FETCH-LOGICAL-c316t-a657a2a5588e48d4b34148ae9f819030ccb8333908a486be37be14b93c261afa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-012-9179-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919606594?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Xu, Yitian</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Wang, Laisheng</creatorcontrib><title>A Twin Multi-Class Classification Support Vector Machine</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>Twin support vector machine (TSVM) is a novel machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems rather than a single large one. Classical TSVM is proposed for the binary classification problem. However, multi-class classification problem is often met in our real world. For this problem, a new multi-class classification algorithm, called Twin-KSVC, is proposed in this paper. It takes the advantages of both TSVM and K-SVCR (support vector classification-regression machine for
k
-class classification) and evaluates all the training points into a “1-versus-1-versus-rest” structure, so it generates ternary outputs { −1, 0, +1}. As all the samples are utilized in constructing the classification hyper-plane, our proposed algorithm yields higher classification accuracy in comparison with other two algorithms. Experimental results on eleven benchmark datasets demonstrate the feasibility and validity of our proposed algorithm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Classification</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Machine learning</subject><subject>Neurosciences</subject><subject>Quadratic programming</subject><subject>Support vector machines</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FM_jU5LkVdYRcPrl5DGlPNUtuatIjf3taKnrzMzOG9N7wfQudALoGQ_CoBFUJjAhRryDXOD9AClJRYa8kPf28hj9FJSntCpNCCLpBaZbuP0GTboe4DLmqbUvY9QxWc7UPbZA9D17Wxz56869uYba17DY0_RUeVrZM_-9lL9HhzvSvWeHN_e1esNtgxkD22UuSWWiGU8lw985Jx4Mp6XSnQhBHnSsUY00RZrmTpWV564KVmjkqwlWVLdDHndrF9H3zqzb4dYjO-NFSDllMRPqpgVrnYphR9ZboY3mz8NEDMBMjMgMwIyEyATD566OxJo7Z58fEv-X_TFyfJZuA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Xu, Yitian</creator><creator>Guo, Rui</creator><creator>Wang, Laisheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20131201</creationdate><title>A Twin Multi-Class Classification Support Vector Machine</title><author>Xu, Yitian ; Guo, Rui ; Wang, Laisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a657a2a5588e48d4b34148ae9f819030ccb8333908a486be37be14b93c261afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Classification</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Machine learning</topic><topic>Neurosciences</topic><topic>Quadratic programming</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yitian</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Wang, Laisheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yitian</au><au>Guo, Rui</au><au>Wang, Laisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Twin Multi-Class Classification Support Vector Machine</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>5</volume><issue>4</issue><spage>580</spage><epage>588</epage><pages>580-588</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>Twin support vector machine (TSVM) is a novel machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems rather than a single large one. Classical TSVM is proposed for the binary classification problem. However, multi-class classification problem is often met in our real world. For this problem, a new multi-class classification algorithm, called Twin-KSVC, is proposed in this paper. It takes the advantages of both TSVM and K-SVCR (support vector classification-regression machine for
k
-class classification) and evaluates all the training points into a “1-versus-1-versus-rest” structure, so it generates ternary outputs { −1, 0, +1}. As all the samples are utilized in constructing the classification hyper-plane, our proposed algorithm yields higher classification accuracy in comparison with other two algorithms. Experimental results on eleven benchmark datasets demonstrate the feasibility and validity of our proposed algorithm.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s12559-012-9179-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-9956 |
ispartof | Cognitive computation, 2013-12, Vol.5 (4), p.580-588 |
issn | 1866-9956 1866-9964 |
language | eng |
recordid | cdi_proquest_journals_2919606594 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Biomedical and Life Sciences Biomedicine Classification Computation by Abstract Devices Computational Biology/Bioinformatics Machine learning Neurosciences Quadratic programming Support vector machines |
title | A Twin Multi-Class Classification Support Vector Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Twin%20Multi-Class%20Classification%20Support%20Vector%20Machine&rft.jtitle=Cognitive%20computation&rft.au=Xu,%20Yitian&rft.date=2013-12-01&rft.volume=5&rft.issue=4&rft.spage=580&rft.epage=588&rft.pages=580-588&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-012-9179-7&rft_dat=%3Cproquest_cross%3E2919606594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919606594&rft_id=info:pmid/&rfr_iscdi=true |