A structural information-based twin-hypersphere support vector machine classifier
Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2017-02, Vol.8 (1), p.295-308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 1 |
container_start_page | 295 |
container_title | International journal of machine learning and cybernetics |
container_volume | 8 |
creator | Peng, Xinjun Kong, Lingyan Chen, Dongjing |
description | Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers. |
doi_str_mv | 10.1007/s13042-014-0323-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919606461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919606461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsNT-Ad4CnldnP7JJjqX4BQURFLwtm2TWprRJnN0o_e9NiejJucwc3nvD-zF2KeBaAGQ3QSjQkoPQHJRUXJ-wmchNznPI305_70ycs0UIWxjHgFIgZ-x5mYRIQxUHcrukaX1HexebruWlC1gn8atp-ebQI4V-g4RJGPq-o5h8YhU7Svau2jQtJtXOhdD4BumCnXm3C7j42XP2enf7snrg66f7x9VyzSslTORFikIWUhpA7x3qNPXO6MpBmbnUyVSnoOvMOA8FOGHGnmUB2qS6VqigdGrOrqbcnrqPAUO0226gdnxpZSEKA0YbMarEpKqoC4HQ256avaODFWCP8OwEz47w7BGe1aNHTp4watt3pL_k_03ffXlx-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919606461</pqid></control><display><type>article</type><title>A structural information-based twin-hypersphere support vector machine classifier</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Peng, Xinjun ; Kong, Lingyan ; Chen, Dongjing</creator><creatorcontrib>Peng, Xinjun ; Kong, Lingyan ; Chen, Dongjing</creatorcontrib><description>Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-014-0323-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Classifiers ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Hyperspheres ; Learning ; Mechatronics ; Optimization ; Original Article ; Pattern Recognition ; Quadratic programming ; Robotics ; Support vector machines ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2017-02, Vol.8 (1), p.295-308</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</citedby><cites>FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-014-0323-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919606461?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Peng, Xinjun</creatorcontrib><creatorcontrib>Kong, Lingyan</creatorcontrib><creatorcontrib>Chen, Dongjing</creatorcontrib><title>A structural information-based twin-hypersphere support vector machine classifier</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Hyperspheres</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Quadratic programming</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1Lw0AQxRdRsNT-Ad4CnldnP7JJjqX4BQURFLwtm2TWprRJnN0o_e9NiejJucwc3nvD-zF2KeBaAGQ3QSjQkoPQHJRUXJ-wmchNznPI305_70ycs0UIWxjHgFIgZ-x5mYRIQxUHcrukaX1HexebruWlC1gn8atp-ebQI4V-g4RJGPq-o5h8YhU7Svau2jQtJtXOhdD4BumCnXm3C7j42XP2enf7snrg66f7x9VyzSslTORFikIWUhpA7x3qNPXO6MpBmbnUyVSnoOvMOA8FOGHGnmUB2qS6VqigdGrOrqbcnrqPAUO0226gdnxpZSEKA0YbMarEpKqoC4HQ256avaODFWCP8OwEz47w7BGe1aNHTp4watt3pL_k_03ffXlx-w</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Peng, Xinjun</creator><creator>Kong, Lingyan</creator><creator>Chen, Dongjing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>A structural information-based twin-hypersphere support vector machine classifier</title><author>Peng, Xinjun ; Kong, Lingyan ; Chen, Dongjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Hyperspheres</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Quadratic programming</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Xinjun</creatorcontrib><creatorcontrib>Kong, Lingyan</creatorcontrib><creatorcontrib>Chen, Dongjing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Xinjun</au><au>Kong, Lingyan</au><au>Chen, Dongjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A structural information-based twin-hypersphere support vector machine classifier</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>295</spage><epage>308</epage><pages>295-308</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-014-0323-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2017-02, Vol.8 (1), p.295-308 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2919606461 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Artificial Intelligence Classifiers Complex Systems Computational Intelligence Control Engineering Hyperspheres Learning Mechatronics Optimization Original Article Pattern Recognition Quadratic programming Robotics Support vector machines Systems Biology |
title | A structural information-based twin-hypersphere support vector machine classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20structural%20information-based%20twin-hypersphere%20support%20vector%20machine%20classifier&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Peng,%20Xinjun&rft.date=2017-02-01&rft.volume=8&rft.issue=1&rft.spage=295&rft.epage=308&rft.pages=295-308&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-014-0323-4&rft_dat=%3Cproquest_cross%3E2919606461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919606461&rft_id=info:pmid/&rfr_iscdi=true |