A structural information-based twin-hypersphere support vector machine classifier

Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2017-02, Vol.8 (1), p.295-308
Hauptverfasser: Peng, Xinjun, Kong, Lingyan, Chen, Dongjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 1
container_start_page 295
container_title International journal of machine learning and cybernetics
container_volume 8
creator Peng, Xinjun
Kong, Lingyan
Chen, Dongjing
description Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers.
doi_str_mv 10.1007/s13042-014-0323-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919606461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919606461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsNT-Ad4CnldnP7JJjqX4BQURFLwtm2TWprRJnN0o_e9NiejJucwc3nvD-zF2KeBaAGQ3QSjQkoPQHJRUXJ-wmchNznPI305_70ycs0UIWxjHgFIgZ-x5mYRIQxUHcrukaX1HexebruWlC1gn8atp-ebQI4V-g4RJGPq-o5h8YhU7Svau2jQtJtXOhdD4BumCnXm3C7j42XP2enf7snrg66f7x9VyzSslTORFikIWUhpA7x3qNPXO6MpBmbnUyVSnoOvMOA8FOGHGnmUB2qS6VqigdGrOrqbcnrqPAUO0226gdnxpZSEKA0YbMarEpKqoC4HQ256avaODFWCP8OwEz47w7BGe1aNHTp4watt3pL_k_03ffXlx-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919606461</pqid></control><display><type>article</type><title>A structural information-based twin-hypersphere support vector machine classifier</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Peng, Xinjun ; Kong, Lingyan ; Chen, Dongjing</creator><creatorcontrib>Peng, Xinjun ; Kong, Lingyan ; Chen, Dongjing</creatorcontrib><description>Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-014-0323-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Classifiers ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Hyperspheres ; Learning ; Mechatronics ; Optimization ; Original Article ; Pattern Recognition ; Quadratic programming ; Robotics ; Support vector machines ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2017-02, Vol.8 (1), p.295-308</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</citedby><cites>FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-014-0323-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919606461?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Peng, Xinjun</creatorcontrib><creatorcontrib>Kong, Lingyan</creatorcontrib><creatorcontrib>Chen, Dongjing</creatorcontrib><title>A structural information-based twin-hypersphere support vector machine classifier</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Hyperspheres</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Quadratic programming</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1Lw0AQxRdRsNT-Ad4CnldnP7JJjqX4BQURFLwtm2TWprRJnN0o_e9NiejJucwc3nvD-zF2KeBaAGQ3QSjQkoPQHJRUXJ-wmchNznPI305_70ycs0UIWxjHgFIgZ-x5mYRIQxUHcrukaX1HexebruWlC1gn8atp-ebQI4V-g4RJGPq-o5h8YhU7Svau2jQtJtXOhdD4BumCnXm3C7j42XP2enf7snrg66f7x9VyzSslTORFikIWUhpA7x3qNPXO6MpBmbnUyVSnoOvMOA8FOGHGnmUB2qS6VqigdGrOrqbcnrqPAUO0226gdnxpZSEKA0YbMarEpKqoC4HQ256avaODFWCP8OwEz47w7BGe1aNHTp4watt3pL_k_03ffXlx-w</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Peng, Xinjun</creator><creator>Kong, Lingyan</creator><creator>Chen, Dongjing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>A structural information-based twin-hypersphere support vector machine classifier</title><author>Peng, Xinjun ; Kong, Lingyan ; Chen, Dongjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-95e1292260effae455fa64ca0b7a5a254504d76af090a16100b904654d3e30ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Hyperspheres</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Quadratic programming</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Xinjun</creatorcontrib><creatorcontrib>Kong, Lingyan</creatorcontrib><creatorcontrib>Chen, Dongjing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Xinjun</au><au>Kong, Lingyan</au><au>Chen, Dongjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A structural information-based twin-hypersphere support vector machine classifier</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>295</spage><epage>308</epage><pages>295-308</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Twin-hypersphere support vector machine (THSVM) for binary pattern recognition aims at generating two hyperspheres in the feature space such that each hypersphere contains as many as possible samples in one class and is as far as possible from the other one. THSVM has a fast learning speed since it solves two small sized support vector machine (SVM)-type quadratic programming problems (QPPs). However, it only simply considers the prior class-based structural information in the optimization problems. In this paper, a structural information-based THSVM (STHSVM) classifier for binary classification is presented. This proposed STHSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. In addition, it also leads to a fast learning speed since this STHSVM solves a series of smaller-sized QPPs compared with THSVM. Experimental results demonstrate that STHSVM is superior in generalization performance to other classifiers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-014-0323-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2017-02, Vol.8 (1), p.295-308
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919606461
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Classifiers
Complex Systems
Computational Intelligence
Control
Engineering
Hyperspheres
Learning
Mechatronics
Optimization
Original Article
Pattern Recognition
Quadratic programming
Robotics
Support vector machines
Systems Biology
title A structural information-based twin-hypersphere support vector machine classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20structural%20information-based%20twin-hypersphere%20support%20vector%20machine%20classifier&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Peng,%20Xinjun&rft.date=2017-02-01&rft.volume=8&rft.issue=1&rft.spage=295&rft.epage=308&rft.pages=295-308&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-014-0323-4&rft_dat=%3Cproquest_cross%3E2919606461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919606461&rft_id=info:pmid/&rfr_iscdi=true