Extended gravitoelectromagnetism. I. Variational formulation
This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2021-04, Vol.136 (4), p.373, Article 373 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 373 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Ludwig, G. O. |
description | This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism. |
doi_str_mv | 10.1140/epjp/s13360-021-01367-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919600650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919600650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOOY-gwWfs12Sa9aCLzKmDga-DF9Dlqajo21qkol-ezMr6Jv3cndwv-PPj5BbBnPGEBZ2OA6LwISQQIEzCkzIJeUXZMJZCTRHxMs_8zWZhXCEVFgyLHFC7tcf0faVrbKD1-9NdLa1JnrX6UNvYxO6ebaZZ6_aNzo2rtdtVjvfndrv7YZc1boNdvbTp2T3uN6tnun25WmzethSIwRGqjVnFRpTImizBCxkXhUoEcSe1wKlyRnjJdOa8T0UmOfaQJXySZGjrFFMyd34dvDu7WRDVEd38ilLUAkrJYDMIV0txyvjXQje1mrwTaf9p2KgzrLUWZYaZakkS33LUjyRxUiGRPQH63___4d-AVQzbw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919600650</pqid></control><display><type>article</type><title>Extended gravitoelectromagnetism. I. Variational formulation</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ludwig, G. O.</creator><creatorcontrib>Ludwig, G. O.</creatorcontrib><description>This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01367-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Complex Systems ; Compressible fluids ; Condensed Matter Physics ; Electromagnetism ; Energy ; Equations of motion ; Field theory ; Galactic rotation ; Gravitational waves ; Gravity ; Hamilton's principle ; Mathematical analysis ; Mathematical and Computational Physics ; Mercury ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Relativistic effects ; Tensors ; Theoretical ; Theory of relativity ; Velocity</subject><ispartof>European physical journal plus, 2021-04, Vol.136 (4), p.373, Article 373</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</citedby><cites>FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</cites><orcidid>0000-0003-3035-5796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01367-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919600650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Ludwig, G. O.</creatorcontrib><title>Extended gravitoelectromagnetism. I. Variational formulation</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Compressible fluids</subject><subject>Condensed Matter Physics</subject><subject>Electromagnetism</subject><subject>Energy</subject><subject>Equations of motion</subject><subject>Field theory</subject><subject>Galactic rotation</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Hamilton's principle</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mercury</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Relativistic effects</subject><subject>Tensors</subject><subject>Theoretical</subject><subject>Theory of relativity</subject><subject>Velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFFLwzAQx4MoOOY-gwWfs12Sa9aCLzKmDga-DF9Dlqajo21qkol-ezMr6Jv3cndwv-PPj5BbBnPGEBZ2OA6LwISQQIEzCkzIJeUXZMJZCTRHxMs_8zWZhXCEVFgyLHFC7tcf0faVrbKD1-9NdLa1JnrX6UNvYxO6ebaZZ6_aNzo2rtdtVjvfndrv7YZc1boNdvbTp2T3uN6tnun25WmzethSIwRGqjVnFRpTImizBCxkXhUoEcSe1wKlyRnjJdOa8T0UmOfaQJXySZGjrFFMyd34dvDu7WRDVEd38ilLUAkrJYDMIV0txyvjXQje1mrwTaf9p2KgzrLUWZYaZakkS33LUjyRxUiGRPQH63___4d-AVQzbw0</recordid><startdate>20210408</startdate><enddate>20210408</enddate><creator>Ludwig, G. O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3035-5796</orcidid></search><sort><creationdate>20210408</creationdate><title>Extended gravitoelectromagnetism. I. Variational formulation</title><author>Ludwig, G. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Compressible fluids</topic><topic>Condensed Matter Physics</topic><topic>Electromagnetism</topic><topic>Energy</topic><topic>Equations of motion</topic><topic>Field theory</topic><topic>Galactic rotation</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Hamilton's principle</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mercury</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Relativistic effects</topic><topic>Tensors</topic><topic>Theoretical</topic><topic>Theory of relativity</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludwig, G. O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludwig, G. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended gravitoelectromagnetism. I. Variational formulation</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-04-08</date><risdate>2021</risdate><volume>136</volume><issue>4</issue><spage>373</spage><pages>373-</pages><artnum>373</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01367-2</doi><orcidid>https://orcid.org/0000-0003-3035-5796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-04, Vol.136 (4), p.373, Article 373 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919600650 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Applied and Technical Physics Approximation Atomic Complex Systems Compressible fluids Condensed Matter Physics Electromagnetism Energy Equations of motion Field theory Galactic rotation Gravitational waves Gravity Hamilton's principle Mathematical analysis Mathematical and Computational Physics Mercury Molecular Optical and Plasma Physics Physics Physics and Astronomy Regular Article Relativistic effects Tensors Theoretical Theory of relativity Velocity |
title | Extended gravitoelectromagnetism. I. Variational formulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20gravitoelectromagnetism.%20I.%20Variational%20formulation&rft.jtitle=European%20physical%20journal%20plus&rft.au=Ludwig,%20G.%20O.&rft.date=2021-04-08&rft.volume=136&rft.issue=4&rft.spage=373&rft.pages=373-&rft.artnum=373&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01367-2&rft_dat=%3Cproquest_cross%3E2919600650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919600650&rft_id=info:pmid/&rfr_iscdi=true |