Extended gravitoelectromagnetism. I. Variational formulation

This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2021-04, Vol.136 (4), p.373, Article 373
1. Verfasser: Ludwig, G. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 373
container_title European physical journal plus
container_volume 136
creator Ludwig, G. O.
description This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism.
doi_str_mv 10.1140/epjp/s13360-021-01367-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919600650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919600650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOOY-gwWfs12Sa9aCLzKmDga-DF9Dlqajo21qkol-ezMr6Jv3cndwv-PPj5BbBnPGEBZ2OA6LwISQQIEzCkzIJeUXZMJZCTRHxMs_8zWZhXCEVFgyLHFC7tcf0faVrbKD1-9NdLa1JnrX6UNvYxO6ebaZZ6_aNzo2rtdtVjvfndrv7YZc1boNdvbTp2T3uN6tnun25WmzethSIwRGqjVnFRpTImizBCxkXhUoEcSe1wKlyRnjJdOa8T0UmOfaQJXySZGjrFFMyd34dvDu7WRDVEd38ilLUAkrJYDMIV0txyvjXQje1mrwTaf9p2KgzrLUWZYaZakkS33LUjyRxUiGRPQH63___4d-AVQzbw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919600650</pqid></control><display><type>article</type><title>Extended gravitoelectromagnetism. I. Variational formulation</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ludwig, G. O.</creator><creatorcontrib>Ludwig, G. O.</creatorcontrib><description>This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01367-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Complex Systems ; Compressible fluids ; Condensed Matter Physics ; Electromagnetism ; Energy ; Equations of motion ; Field theory ; Galactic rotation ; Gravitational waves ; Gravity ; Hamilton's principle ; Mathematical analysis ; Mathematical and Computational Physics ; Mercury ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Relativistic effects ; Tensors ; Theoretical ; Theory of relativity ; Velocity</subject><ispartof>European physical journal plus, 2021-04, Vol.136 (4), p.373, Article 373</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</citedby><cites>FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</cites><orcidid>0000-0003-3035-5796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01367-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919600650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Ludwig, G. O.</creatorcontrib><title>Extended gravitoelectromagnetism. I. Variational formulation</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Compressible fluids</subject><subject>Condensed Matter Physics</subject><subject>Electromagnetism</subject><subject>Energy</subject><subject>Equations of motion</subject><subject>Field theory</subject><subject>Galactic rotation</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Hamilton's principle</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mercury</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Relativistic effects</subject><subject>Tensors</subject><subject>Theoretical</subject><subject>Theory of relativity</subject><subject>Velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFFLwzAQx4MoOOY-gwWfs12Sa9aCLzKmDga-DF9Dlqajo21qkol-ezMr6Jv3cndwv-PPj5BbBnPGEBZ2OA6LwISQQIEzCkzIJeUXZMJZCTRHxMs_8zWZhXCEVFgyLHFC7tcf0faVrbKD1-9NdLa1JnrX6UNvYxO6ebaZZ6_aNzo2rtdtVjvfndrv7YZc1boNdvbTp2T3uN6tnun25WmzethSIwRGqjVnFRpTImizBCxkXhUoEcSe1wKlyRnjJdOa8T0UmOfaQJXySZGjrFFMyd34dvDu7WRDVEd38ilLUAkrJYDMIV0txyvjXQje1mrwTaf9p2KgzrLUWZYaZakkS33LUjyRxUiGRPQH63___4d-AVQzbw0</recordid><startdate>20210408</startdate><enddate>20210408</enddate><creator>Ludwig, G. O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3035-5796</orcidid></search><sort><creationdate>20210408</creationdate><title>Extended gravitoelectromagnetism. I. Variational formulation</title><author>Ludwig, G. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-aa21d4cc940ac704865d846403b2f346c511291aa12b08455ac0d91463546f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Compressible fluids</topic><topic>Condensed Matter Physics</topic><topic>Electromagnetism</topic><topic>Energy</topic><topic>Equations of motion</topic><topic>Field theory</topic><topic>Galactic rotation</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Hamilton's principle</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mercury</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Relativistic effects</topic><topic>Tensors</topic><topic>Theoretical</topic><topic>Theory of relativity</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludwig, G. O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludwig, G. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended gravitoelectromagnetism. I. Variational formulation</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-04-08</date><risdate>2021</risdate><volume>136</volume><issue>4</issue><spage>373</spage><pages>373-</pages><artnum>373</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This work presents a novel approach to well established concepts of gravity, formulating a new and consistent gravitoelectromagnetic theory. The long standing gravitoelectromagnetic field theory is considered in the framework of Hamilton’s principle. A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the fluid and field energy-momentum tensors. A relativistic Cauchy invariant for a compressible fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic fluid equations of motion are written in covariant form suited for calculating higher-order relativistic effects. The integral form of the conservation theorems is presented, as well as equations that describe the excitation of gravitoelectromagnetic waves. As an application, the equations of motion are used to derive the equation that governs the galactic rotation according to gravitoelectromagnetism.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01367-2</doi><orcidid>https://orcid.org/0000-0003-3035-5796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-04, Vol.136 (4), p.373, Article 373
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919600650
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Approximation
Atomic
Complex Systems
Compressible fluids
Condensed Matter Physics
Electromagnetism
Energy
Equations of motion
Field theory
Galactic rotation
Gravitational waves
Gravity
Hamilton's principle
Mathematical analysis
Mathematical and Computational Physics
Mercury
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Relativistic effects
Tensors
Theoretical
Theory of relativity
Velocity
title Extended gravitoelectromagnetism. I. Variational formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20gravitoelectromagnetism.%20I.%20Variational%20formulation&rft.jtitle=European%20physical%20journal%20plus&rft.au=Ludwig,%20G.%20O.&rft.date=2021-04-08&rft.volume=136&rft.issue=4&rft.spage=373&rft.pages=373-&rft.artnum=373&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01367-2&rft_dat=%3Cproquest_cross%3E2919600650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919600650&rft_id=info:pmid/&rfr_iscdi=true