Fuzzy rough set models over two universes

The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2013-12, Vol.4 (6), p.631-645
Hauptverfasser: Xu, Weihua, Sun, Wenxin, Liu, Yufeng, Zhang, Wenxiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 6
container_start_page 631
container_title International journal of machine learning and cybernetics
container_volume 4
creator Xu, Weihua
Sun, Wenxin
Liu, Yufeng
Zhang, Wenxiu
description The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated.
doi_str_mv 10.1007/s13042-012-0129-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919600278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919600278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3hY8eVidyexukqMUq0LBi4K3sGaT2tI2NdlV2l9v1hU9OfCYd3gf8Bg7R7hCAHEdkaDgOeA3VI5HbISykrkE-XL8ywWeskmMK0hXARHwEbucdYfDPgu-W7xl0bbZxjd2HTP_YUPWfvqs2y4TjTaesRNXr6Od_Pwxe57dPk3v8_nj3cP0Zp4bwqrN0RhbO4TKOCLVkKPSFthIq0yhlCNZlK81lFIUvFGkiLisUAihpGs4cKQxuxhyd8G_dza2euW7sE2VmitUFQAXMqlwUJngYwzW6V1Ybuqw1wi6H0UPo-g0SA-l-2Q-eGLSbhc2_CX_b_oCQ-Vhwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919600278</pqid></control><display><type>article</type><title>Fuzzy rough set models over two universes</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Xu, Weihua ; Sun, Wenxin ; Liu, Yufeng ; Zhang, Wenxiu</creator><creatorcontrib>Xu, Weihua ; Sun, Wenxin ; Liu, Yufeng ; Zhang, Wenxiu</creatorcontrib><description>The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-012-0129-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Fuzzy sets ; Information systems ; Mathematical analysis ; Mechatronics ; Neighborhoods ; Operators ; Original Article ; Pattern Recognition ; Robotics ; Rough set models ; Set theory ; Systems Biology ; Universe</subject><ispartof>International journal of machine learning and cybernetics, 2013-12, Vol.4 (6), p.631-645</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</citedby><cites>FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-012-0129-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919600278?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Xu, Weihua</creatorcontrib><creatorcontrib>Sun, Wenxin</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Zhang, Wenxiu</creatorcontrib><title>Fuzzy rough set models over two universes</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Fuzzy sets</subject><subject>Information systems</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Neighborhoods</subject><subject>Operators</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Rough set models</subject><subject>Set theory</subject><subject>Systems Biology</subject><subject>Universe</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEQDaJgqf0B3hY8eVidyexukqMUq0LBi4K3sGaT2tI2NdlV2l9v1hU9OfCYd3gf8Bg7R7hCAHEdkaDgOeA3VI5HbISykrkE-XL8ywWeskmMK0hXARHwEbucdYfDPgu-W7xl0bbZxjd2HTP_YUPWfvqs2y4TjTaesRNXr6Od_Pwxe57dPk3v8_nj3cP0Zp4bwqrN0RhbO4TKOCLVkKPSFthIq0yhlCNZlK81lFIUvFGkiLisUAihpGs4cKQxuxhyd8G_dza2euW7sE2VmitUFQAXMqlwUJngYwzW6V1Ybuqw1wi6H0UPo-g0SA-l-2Q-eGLSbhc2_CX_b_oCQ-Vhwg</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Xu, Weihua</creator><creator>Sun, Wenxin</creator><creator>Liu, Yufeng</creator><creator>Zhang, Wenxiu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20131201</creationdate><title>Fuzzy rough set models over two universes</title><author>Xu, Weihua ; Sun, Wenxin ; Liu, Yufeng ; Zhang, Wenxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Fuzzy sets</topic><topic>Information systems</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Neighborhoods</topic><topic>Operators</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Rough set models</topic><topic>Set theory</topic><topic>Systems Biology</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weihua</creatorcontrib><creatorcontrib>Sun, Wenxin</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Zhang, Wenxiu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weihua</au><au>Sun, Wenxin</au><au>Liu, Yufeng</au><au>Zhang, Wenxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy rough set models over two universes</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>4</volume><issue>6</issue><spage>631</spage><epage>645</epage><pages>631-645</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-012-0129-1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2013-12, Vol.4 (6), p.631-645
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919600278
source SpringerLink Journals; ProQuest Central
subjects Approximation
Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Engineering
Fuzzy sets
Information systems
Mathematical analysis
Mechatronics
Neighborhoods
Operators
Original Article
Pattern Recognition
Robotics
Rough set models
Set theory
Systems Biology
Universe
title Fuzzy rough set models over two universes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20rough%20set%20models%20over%20two%20universes&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Xu,%20Weihua&rft.date=2013-12-01&rft.volume=4&rft.issue=6&rft.spage=631&rft.epage=645&rft.pages=631-645&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-012-0129-1&rft_dat=%3Cproquest_cross%3E2919600278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919600278&rft_id=info:pmid/&rfr_iscdi=true