Fuzzy rough set models over two universes
The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximati...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2013-12, Vol.4 (6), p.631-645 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 6 |
container_start_page | 631 |
container_title | International journal of machine learning and cybernetics |
container_volume | 4 |
creator | Xu, Weihua Sun, Wenxin Liu, Yufeng Zhang, Wenxiu |
description | The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated. |
doi_str_mv | 10.1007/s13042-012-0129-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919600278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919600278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3hY8eVidyexukqMUq0LBi4K3sGaT2tI2NdlV2l9v1hU9OfCYd3gf8Bg7R7hCAHEdkaDgOeA3VI5HbISykrkE-XL8ywWeskmMK0hXARHwEbucdYfDPgu-W7xl0bbZxjd2HTP_YUPWfvqs2y4TjTaesRNXr6Od_Pwxe57dPk3v8_nj3cP0Zp4bwqrN0RhbO4TKOCLVkKPSFthIq0yhlCNZlK81lFIUvFGkiLisUAihpGs4cKQxuxhyd8G_dza2euW7sE2VmitUFQAXMqlwUJngYwzW6V1Ybuqw1wi6H0UPo-g0SA-l-2Q-eGLSbhc2_CX_b_oCQ-Vhwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919600278</pqid></control><display><type>article</type><title>Fuzzy rough set models over two universes</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Xu, Weihua ; Sun, Wenxin ; Liu, Yufeng ; Zhang, Wenxiu</creator><creatorcontrib>Xu, Weihua ; Sun, Wenxin ; Liu, Yufeng ; Zhang, Wenxiu</creatorcontrib><description>The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-012-0129-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Fuzzy sets ; Information systems ; Mathematical analysis ; Mechatronics ; Neighborhoods ; Operators ; Original Article ; Pattern Recognition ; Robotics ; Rough set models ; Set theory ; Systems Biology ; Universe</subject><ispartof>International journal of machine learning and cybernetics, 2013-12, Vol.4 (6), p.631-645</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</citedby><cites>FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-012-0129-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919600278?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Xu, Weihua</creatorcontrib><creatorcontrib>Sun, Wenxin</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Zhang, Wenxiu</creatorcontrib><title>Fuzzy rough set models over two universes</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Fuzzy sets</subject><subject>Information systems</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Neighborhoods</subject><subject>Operators</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Rough set models</subject><subject>Set theory</subject><subject>Systems Biology</subject><subject>Universe</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEQDaJgqf0B3hY8eVidyexukqMUq0LBi4K3sGaT2tI2NdlV2l9v1hU9OfCYd3gf8Bg7R7hCAHEdkaDgOeA3VI5HbISykrkE-XL8ywWeskmMK0hXARHwEbucdYfDPgu-W7xl0bbZxjd2HTP_YUPWfvqs2y4TjTaesRNXr6Od_Pwxe57dPk3v8_nj3cP0Zp4bwqrN0RhbO4TKOCLVkKPSFthIq0yhlCNZlK81lFIUvFGkiLisUAihpGs4cKQxuxhyd8G_dza2euW7sE2VmitUFQAXMqlwUJngYwzW6V1Ybuqw1wi6H0UPo-g0SA-l-2Q-eGLSbhc2_CX_b_oCQ-Vhwg</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Xu, Weihua</creator><creator>Sun, Wenxin</creator><creator>Liu, Yufeng</creator><creator>Zhang, Wenxiu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20131201</creationdate><title>Fuzzy rough set models over two universes</title><author>Xu, Weihua ; Sun, Wenxin ; Liu, Yufeng ; Zhang, Wenxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1cceaf106cf339d3f35e41d8e9c499f3845ba058742d93933286177798fd20213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Fuzzy sets</topic><topic>Information systems</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Neighborhoods</topic><topic>Operators</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Rough set models</topic><topic>Set theory</topic><topic>Systems Biology</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weihua</creatorcontrib><creatorcontrib>Sun, Wenxin</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Zhang, Wenxiu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weihua</au><au>Sun, Wenxin</au><au>Liu, Yufeng</au><au>Zhang, Wenxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy rough set models over two universes</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>4</volume><issue>6</issue><spage>631</spage><epage>645</epage><pages>631-645</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>The extension of rough set model is an important research direction in rough set theory. The aim of this paper is to present new extensions of the rough set model over two different universes which are rough fuzzy set model in a generalized approximation space, rough set model in a fuzzy approximation space and rough fuzzy set model in a fuzzy approximation space based over two different universes. Moreover, the properties of the approximation operators in these models are investigated. Furthermore, by employing cut set of fuzzy set and fuzzy relation, classical representations of fuzzy rough approximation operators are studied. Finally, the measures of fuzzy rough set models are presented, and the relationships among the fuzzy rough models and rough set model over two universes are investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-012-0129-1</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2013-12, Vol.4 (6), p.631-645 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2919600278 |
source | SpringerLink Journals; ProQuest Central |
subjects | Approximation Artificial Intelligence Complex Systems Computational Intelligence Control Engineering Fuzzy sets Information systems Mathematical analysis Mechatronics Neighborhoods Operators Original Article Pattern Recognition Robotics Rough set models Set theory Systems Biology Universe |
title | Fuzzy rough set models over two universes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20rough%20set%20models%20over%20two%20universes&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Xu,%20Weihua&rft.date=2013-12-01&rft.volume=4&rft.issue=6&rft.spage=631&rft.epage=645&rft.pages=631-645&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-012-0129-1&rft_dat=%3Cproquest_cross%3E2919600278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919600278&rft_id=info:pmid/&rfr_iscdi=true |