An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations
As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are th...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2019-07, Vol.10 (7), p.1613-1629 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1629 |
---|---|
container_issue | 7 |
container_start_page | 1613 |
container_title | International journal of machine learning and cybernetics |
container_volume | 10 |
creator | Gao, Jie Xu, Zeshui Ren, Peijia Liao, Huchang |
description | As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method. |
doi_str_mv | 10.1007/s13042-018-0839-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919599648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919599648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouKz7A7wFPFcnadomx2XxCxa8KHgLTTLdzdqPNWmFBX-8WSt6ci4zDO_zzvAmySWFawpQ3gSaAWcpUJGCyGQKJ8mMikKkAsTr6e9c0vNkEcIOYhWQZcBmyeeyI9ii32BnDsSiccH1HWmrN9dtSIvDtrdEVwEtiethi6Qdm8HtG2eqwX0gMX0XXBi-8b4me9_rSrsmrpwhTTQZp3HvsUYfZUg8NpGN3EVyVldNwMVPnycvd7fPq4d0_XT_uFquU5MVfEipkSXLwYLQ1vBaWqx1wWShmaVlzYFrzHPDLZRMSI2WUatrlktWcinKss7mydXkG797HzEMatePvosnFZNU5lIWXEQVnVTG9yHEd9Xeu7byB0VBHXNWU84q5qyOOSuIDJuYELXdBv2f8__QF0W6gvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919599648</pqid></control><display><type>article</type><title>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Gao, Jie ; Xu, Zeshui ; Ren, Peijia ; Liao, Huchang</creator><creatorcontrib>Gao, Jie ; Xu, Zeshui ; Ren, Peijia ; Liao, Huchang</creatorcontrib><description>As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-018-0839-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Case studies ; Chemical industry ; Complex Systems ; Computational Intelligence ; Consistency ; Control ; Decision making ; Decision support systems ; Emergency management ; Emergency preparedness ; Engineering ; Evacuations & rescues ; Linguistics ; Mechatronics ; Original Article ; Pattern Recognition ; Preferences ; Probability ; Robotics ; Statistical analysis ; Success factors ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2019-07, Vol.10 (7), p.1613-1629</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</citedby><cites>FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-018-0839-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919599648?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Xu, Zeshui</creatorcontrib><creatorcontrib>Ren, Peijia</creatorcontrib><creatorcontrib>Liao, Huchang</creatorcontrib><title>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method.</description><subject>Artificial Intelligence</subject><subject>Case studies</subject><subject>Chemical industry</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Consistency</subject><subject>Control</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Emergency management</subject><subject>Emergency preparedness</subject><subject>Engineering</subject><subject>Evacuations & rescues</subject><subject>Linguistics</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Preferences</subject><subject>Probability</subject><subject>Robotics</subject><subject>Statistical analysis</subject><subject>Success factors</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouKz7A7wFPFcnadomx2XxCxa8KHgLTTLdzdqPNWmFBX-8WSt6ci4zDO_zzvAmySWFawpQ3gSaAWcpUJGCyGQKJ8mMikKkAsTr6e9c0vNkEcIOYhWQZcBmyeeyI9ii32BnDsSiccH1HWmrN9dtSIvDtrdEVwEtiethi6Qdm8HtG2eqwX0gMX0XXBi-8b4me9_rSrsmrpwhTTQZp3HvsUYfZUg8NpGN3EVyVldNwMVPnycvd7fPq4d0_XT_uFquU5MVfEipkSXLwYLQ1vBaWqx1wWShmaVlzYFrzHPDLZRMSI2WUatrlktWcinKss7mydXkG797HzEMatePvosnFZNU5lIWXEQVnVTG9yHEd9Xeu7byB0VBHXNWU84q5qyOOSuIDJuYELXdBv2f8__QF0W6gvs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Gao, Jie</creator><creator>Xu, Zeshui</creator><creator>Ren, Peijia</creator><creator>Liao, Huchang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190701</creationdate><title>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</title><author>Gao, Jie ; Xu, Zeshui ; Ren, Peijia ; Liao, Huchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Case studies</topic><topic>Chemical industry</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Consistency</topic><topic>Control</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Emergency management</topic><topic>Emergency preparedness</topic><topic>Engineering</topic><topic>Evacuations & rescues</topic><topic>Linguistics</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Preferences</topic><topic>Probability</topic><topic>Robotics</topic><topic>Statistical analysis</topic><topic>Success factors</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Xu, Zeshui</creatorcontrib><creatorcontrib>Ren, Peijia</creatorcontrib><creatorcontrib>Liao, Huchang</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jie</au><au>Xu, Zeshui</au><au>Ren, Peijia</au><au>Liao, Huchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>10</volume><issue>7</issue><spage>1613</spage><epage>1629</epage><pages>1613-1629</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-018-0839-0</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2019-07, Vol.10 (7), p.1613-1629 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2919599648 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Case studies Chemical industry Complex Systems Computational Intelligence Consistency Control Decision making Decision support systems Emergency management Emergency preparedness Engineering Evacuations & rescues Linguistics Mechatronics Original Article Pattern Recognition Preferences Probability Robotics Statistical analysis Success factors Systems Biology |
title | An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20emergency%20decision%20making%20method%20based%20on%20the%20multiplicative%20consistency%20of%20probabilistic%20linguistic%20preference%20relations&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Gao,%20Jie&rft.date=2019-07-01&rft.volume=10&rft.issue=7&rft.spage=1613&rft.epage=1629&rft.pages=1613-1629&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-018-0839-0&rft_dat=%3Cproquest_cross%3E2919599648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919599648&rft_id=info:pmid/&rfr_iscdi=true |