An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations

As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2019-07, Vol.10 (7), p.1613-1629
Hauptverfasser: Gao, Jie, Xu, Zeshui, Ren, Peijia, Liao, Huchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1629
container_issue 7
container_start_page 1613
container_title International journal of machine learning and cybernetics
container_volume 10
creator Gao, Jie
Xu, Zeshui
Ren, Peijia
Liao, Huchang
description As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method.
doi_str_mv 10.1007/s13042-018-0839-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919599648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919599648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouKz7A7wFPFcnadomx2XxCxa8KHgLTTLdzdqPNWmFBX-8WSt6ci4zDO_zzvAmySWFawpQ3gSaAWcpUJGCyGQKJ8mMikKkAsTr6e9c0vNkEcIOYhWQZcBmyeeyI9ii32BnDsSiccH1HWmrN9dtSIvDtrdEVwEtiethi6Qdm8HtG2eqwX0gMX0XXBi-8b4me9_rSrsmrpwhTTQZp3HvsUYfZUg8NpGN3EVyVldNwMVPnycvd7fPq4d0_XT_uFquU5MVfEipkSXLwYLQ1vBaWqx1wWShmaVlzYFrzHPDLZRMSI2WUatrlktWcinKss7mydXkG797HzEMatePvosnFZNU5lIWXEQVnVTG9yHEd9Xeu7byB0VBHXNWU84q5qyOOSuIDJuYELXdBv2f8__QF0W6gvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919599648</pqid></control><display><type>article</type><title>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Gao, Jie ; Xu, Zeshui ; Ren, Peijia ; Liao, Huchang</creator><creatorcontrib>Gao, Jie ; Xu, Zeshui ; Ren, Peijia ; Liao, Huchang</creatorcontrib><description>As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-018-0839-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Case studies ; Chemical industry ; Complex Systems ; Computational Intelligence ; Consistency ; Control ; Decision making ; Decision support systems ; Emergency management ; Emergency preparedness ; Engineering ; Evacuations &amp; rescues ; Linguistics ; Mechatronics ; Original Article ; Pattern Recognition ; Preferences ; Probability ; Robotics ; Statistical analysis ; Success factors ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2019-07, Vol.10 (7), p.1613-1629</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</citedby><cites>FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-018-0839-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919599648?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Xu, Zeshui</creatorcontrib><creatorcontrib>Ren, Peijia</creatorcontrib><creatorcontrib>Liao, Huchang</creatorcontrib><title>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method.</description><subject>Artificial Intelligence</subject><subject>Case studies</subject><subject>Chemical industry</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Consistency</subject><subject>Control</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Emergency management</subject><subject>Emergency preparedness</subject><subject>Engineering</subject><subject>Evacuations &amp; rescues</subject><subject>Linguistics</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Preferences</subject><subject>Probability</subject><subject>Robotics</subject><subject>Statistical analysis</subject><subject>Success factors</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouKz7A7wFPFcnadomx2XxCxa8KHgLTTLdzdqPNWmFBX-8WSt6ci4zDO_zzvAmySWFawpQ3gSaAWcpUJGCyGQKJ8mMikKkAsTr6e9c0vNkEcIOYhWQZcBmyeeyI9ii32BnDsSiccH1HWmrN9dtSIvDtrdEVwEtiethi6Qdm8HtG2eqwX0gMX0XXBi-8b4me9_rSrsmrpwhTTQZp3HvsUYfZUg8NpGN3EVyVldNwMVPnycvd7fPq4d0_XT_uFquU5MVfEipkSXLwYLQ1vBaWqx1wWShmaVlzYFrzHPDLZRMSI2WUatrlktWcinKss7mydXkG797HzEMatePvosnFZNU5lIWXEQVnVTG9yHEd9Xeu7byB0VBHXNWU84q5qyOOSuIDJuYELXdBv2f8__QF0W6gvs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Gao, Jie</creator><creator>Xu, Zeshui</creator><creator>Ren, Peijia</creator><creator>Liao, Huchang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190701</creationdate><title>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</title><author>Gao, Jie ; Xu, Zeshui ; Ren, Peijia ; Liao, Huchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1c97250d08bdc4f9defb6296b2d17f404be55c4d07289bed21dbf2592749877f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Case studies</topic><topic>Chemical industry</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Consistency</topic><topic>Control</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Emergency management</topic><topic>Emergency preparedness</topic><topic>Engineering</topic><topic>Evacuations &amp; rescues</topic><topic>Linguistics</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Preferences</topic><topic>Probability</topic><topic>Robotics</topic><topic>Statistical analysis</topic><topic>Success factors</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Xu, Zeshui</creatorcontrib><creatorcontrib>Ren, Peijia</creatorcontrib><creatorcontrib>Liao, Huchang</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jie</au><au>Xu, Zeshui</au><au>Ren, Peijia</au><au>Liao, Huchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>10</volume><issue>7</issue><spage>1613</spage><epage>1629</epage><pages>1613-1629</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>As the evolution of emergencies is often uncertain, it may lead to multiple emergency scenarios. According to the characteristics of emergency management, this paper proposes an emergency decision support method by using the probabilistic linguistic preference relations (PLPRs) whose elements are the pairwise comparisons of alternatives given by the decision-makers (DMs) in the form of probabilistic linguistic term sets (PLTSs). As the decision data are limited, it is difficult for the DMs to provide exact occurrence probabilities of all possible emergency scenarios. Thus, we propose a probability correction method by using the computer-aided tool named the case-based reasoning (CBR) to obtain more accurate and reasonable occurrence probabilities of the probabilistic linguistic elements (PLEs). Then, we introduce a multiplicative consistency index to judge whether a PLPR is consistent or not. Afterwards, an acceptable multiplicative consistency-based emergency decision support method is proposed to get more reliable results. Furthermore, a case study about the emergency decision making in a petrochemical plant fire accident is conducted to illustrate the proposed method. Finally, some comparative analyses are performed to demonstrate the feasibility and effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-018-0839-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2019-07, Vol.10 (7), p.1613-1629
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919599648
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Case studies
Chemical industry
Complex Systems
Computational Intelligence
Consistency
Control
Decision making
Decision support systems
Emergency management
Emergency preparedness
Engineering
Evacuations & rescues
Linguistics
Mechatronics
Original Article
Pattern Recognition
Preferences
Probability
Robotics
Statistical analysis
Success factors
Systems Biology
title An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20emergency%20decision%20making%20method%20based%20on%20the%20multiplicative%20consistency%20of%20probabilistic%20linguistic%20preference%20relations&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Gao,%20Jie&rft.date=2019-07-01&rft.volume=10&rft.issue=7&rft.spage=1613&rft.epage=1629&rft.pages=1613-1629&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-018-0839-0&rft_dat=%3Cproquest_cross%3E2919599648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919599648&rft_id=info:pmid/&rfr_iscdi=true