The study of Plateau–Rayleigh instability with DPD

In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2021-06, Vol.136 (6), p.648, Article 648
Hauptverfasser: Li, Yanggui, Zhai, Jinhui, Xu, Dingfan, Chen, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 648
container_title European physical journal plus
container_volume 136
creator Li, Yanggui
Zhai, Jinhui
Xu, Dingfan
Chen, Gang
description In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation.
doi_str_mv 10.1140/epjp/s13360-021-01599-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919599261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919599261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EElXpGYjEOnTGdt14iVr-JCQqVNaWndhtqtAE2xHKjjtwQ05CSpBgx2xmFt-b0TxCzhEuETlMbbNrpgEZE5ACxRRwJmVKj8iIooR0xjk__jOfkkkIO-iLS-SSjwhfb20SYlt0Se2SVaWj1e3n-8eT7ipbbrZJuQ9Rm7IqY5e8lXGbLFfLM3LidBXs5KePyfPN9Xpxlz483t4vrh7SnDEeUyGgcHmeIUORoSmYLGTOwQE4lwNl1BhnBDW2MGA1srkGnAthsowh15axMbkY9ja-fm1tiGpXt37fn1RUouxfpQL71HxI5b4OwVunGl--aN8pBHWwpA6W1GBJ9ZbUtyVFezIbyNAT-431v_v_Q78Ani1t0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919599261</pqid></control><display><type>article</type><title>The study of Plateau–Rayleigh instability with DPD</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Li, Yanggui ; Zhai, Jinhui ; Xu, Dingfan ; Chen, Gang</creator><creatorcontrib>Li, Yanggui ; Zhai, Jinhui ; Xu, Dingfan ; Chen, Gang</creatorcontrib><description>In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01599-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied and Technical Physics ; Atomic ; Binary fluids ; Complex Systems ; Condensed Matter Physics ; Dynamic stability ; Finite volume method ; Fluids ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Numerical analysis ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Simulation ; Theoretical ; Velocity</subject><ispartof>European physical journal plus, 2021-06, Vol.136 (6), p.648, Article 648</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</citedby><cites>FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</cites><orcidid>0000-0002-0533-4291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01599-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919599261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Li, Yanggui</creatorcontrib><creatorcontrib>Zhai, Jinhui</creatorcontrib><creatorcontrib>Xu, Dingfan</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><title>The study of Plateau–Rayleigh instability with DPD</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation.</description><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Binary fluids</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dynamic stability</subject><subject>Finite volume method</subject><subject>Fluids</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1OwzAQRi0EElXpGYjEOnTGdt14iVr-JCQqVNaWndhtqtAE2xHKjjtwQ05CSpBgx2xmFt-b0TxCzhEuETlMbbNrpgEZE5ACxRRwJmVKj8iIooR0xjk__jOfkkkIO-iLS-SSjwhfb20SYlt0Se2SVaWj1e3n-8eT7ipbbrZJuQ9Rm7IqY5e8lXGbLFfLM3LidBXs5KePyfPN9Xpxlz483t4vrh7SnDEeUyGgcHmeIUORoSmYLGTOwQE4lwNl1BhnBDW2MGA1srkGnAthsowh15axMbkY9ja-fm1tiGpXt37fn1RUouxfpQL71HxI5b4OwVunGl--aN8pBHWwpA6W1GBJ9ZbUtyVFezIbyNAT-431v_v_Q78Ani1t0w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Li, Yanggui</creator><creator>Zhai, Jinhui</creator><creator>Xu, Dingfan</creator><creator>Chen, Gang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0533-4291</orcidid></search><sort><creationdate>20210601</creationdate><title>The study of Plateau–Rayleigh instability with DPD</title><author>Li, Yanggui ; Zhai, Jinhui ; Xu, Dingfan ; Chen, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Binary fluids</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dynamic stability</topic><topic>Finite volume method</topic><topic>Fluids</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanggui</creatorcontrib><creatorcontrib>Zhai, Jinhui</creatorcontrib><creatorcontrib>Xu, Dingfan</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanggui</au><au>Zhai, Jinhui</au><au>Xu, Dingfan</au><au>Chen, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The study of Plateau–Rayleigh instability with DPD</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>136</volume><issue>6</issue><spage>648</spage><pages>648-</pages><artnum>648</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01599-2</doi><orcidid>https://orcid.org/0000-0002-0533-4291</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-06, Vol.136 (6), p.648, Article 648
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919599261
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Applied and Technical Physics
Atomic
Binary fluids
Complex Systems
Condensed Matter Physics
Dynamic stability
Finite volume method
Fluids
Mathematical and Computational Physics
Mathematical models
Molecular
Numerical analysis
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Simulation
Theoretical
Velocity
title The study of Plateau–Rayleigh instability with DPD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20study%20of%20Plateau%E2%80%93Rayleigh%20instability%20with%20DPD&rft.jtitle=European%20physical%20journal%20plus&rft.au=Li,%20Yanggui&rft.date=2021-06-01&rft.volume=136&rft.issue=6&rft.spage=648&rft.pages=648-&rft.artnum=648&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01599-2&rft_dat=%3Cproquest_cross%3E2919599261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919599261&rft_id=info:pmid/&rfr_iscdi=true