The study of Plateau–Rayleigh instability with DPD
In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2021-06, Vol.136 (6), p.648, Article 648 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 648 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Li, Yanggui Zhai, Jinhui Xu, Dingfan Chen, Gang |
description | In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation. |
doi_str_mv | 10.1140/epjp/s13360-021-01599-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919599261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919599261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EElXpGYjEOnTGdt14iVr-JCQqVNaWndhtqtAE2xHKjjtwQ05CSpBgx2xmFt-b0TxCzhEuETlMbbNrpgEZE5ACxRRwJmVKj8iIooR0xjk__jOfkkkIO-iLS-SSjwhfb20SYlt0Se2SVaWj1e3n-8eT7ipbbrZJuQ9Rm7IqY5e8lXGbLFfLM3LidBXs5KePyfPN9Xpxlz483t4vrh7SnDEeUyGgcHmeIUORoSmYLGTOwQE4lwNl1BhnBDW2MGA1srkGnAthsowh15axMbkY9ja-fm1tiGpXt37fn1RUouxfpQL71HxI5b4OwVunGl--aN8pBHWwpA6W1GBJ9ZbUtyVFezIbyNAT-431v_v_Q78Ani1t0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919599261</pqid></control><display><type>article</type><title>The study of Plateau–Rayleigh instability with DPD</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Li, Yanggui ; Zhai, Jinhui ; Xu, Dingfan ; Chen, Gang</creator><creatorcontrib>Li, Yanggui ; Zhai, Jinhui ; Xu, Dingfan ; Chen, Gang</creatorcontrib><description>In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01599-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied and Technical Physics ; Atomic ; Binary fluids ; Complex Systems ; Condensed Matter Physics ; Dynamic stability ; Finite volume method ; Fluids ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Numerical analysis ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Simulation ; Theoretical ; Velocity</subject><ispartof>European physical journal plus, 2021-06, Vol.136 (6), p.648, Article 648</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</citedby><cites>FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</cites><orcidid>0000-0002-0533-4291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01599-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919599261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Li, Yanggui</creatorcontrib><creatorcontrib>Zhai, Jinhui</creatorcontrib><creatorcontrib>Xu, Dingfan</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><title>The study of Plateau–Rayleigh instability with DPD</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation.</description><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Binary fluids</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dynamic stability</subject><subject>Finite volume method</subject><subject>Fluids</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1OwzAQRi0EElXpGYjEOnTGdt14iVr-JCQqVNaWndhtqtAE2xHKjjtwQ05CSpBgx2xmFt-b0TxCzhEuETlMbbNrpgEZE5ACxRRwJmVKj8iIooR0xjk__jOfkkkIO-iLS-SSjwhfb20SYlt0Se2SVaWj1e3n-8eT7ipbbrZJuQ9Rm7IqY5e8lXGbLFfLM3LidBXs5KePyfPN9Xpxlz483t4vrh7SnDEeUyGgcHmeIUORoSmYLGTOwQE4lwNl1BhnBDW2MGA1srkGnAthsowh15axMbkY9ja-fm1tiGpXt37fn1RUouxfpQL71HxI5b4OwVunGl--aN8pBHWwpA6W1GBJ9ZbUtyVFezIbyNAT-431v_v_Q78Ani1t0w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Li, Yanggui</creator><creator>Zhai, Jinhui</creator><creator>Xu, Dingfan</creator><creator>Chen, Gang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0533-4291</orcidid></search><sort><creationdate>20210601</creationdate><title>The study of Plateau–Rayleigh instability with DPD</title><author>Li, Yanggui ; Zhai, Jinhui ; Xu, Dingfan ; Chen, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-660dfcc8131681bd39d9c40f00ffc0232bbfb62bedb0ea137a01766b88314ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Binary fluids</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dynamic stability</topic><topic>Finite volume method</topic><topic>Fluids</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanggui</creatorcontrib><creatorcontrib>Zhai, Jinhui</creatorcontrib><creatorcontrib>Xu, Dingfan</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanggui</au><au>Zhai, Jinhui</au><au>Xu, Dingfan</au><au>Chen, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The study of Plateau–Rayleigh instability with DPD</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>136</volume><issue>6</issue><spage>648</spage><pages>648-</pages><artnum>648</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, the Plateau–Rayleigh (PR) instability that occurs in the two-phase fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase fluid, the “color” repulsion model is applied to depict binary fluids according to Rothman–Keller method. The present DPD simulation can reproduce the dynamics behaviors of PR instability. Moreover, we research the influence of the ratio of width and length of the liquid column on the PR instability. The results show that the number of droplets formed due to the PR instability increases as the ratio decreases, which is linear relationship within a certain range. Furthermore, some small-scale characteristics, which are difficult to be captured in macroscopic numerical simulation, can be observed by the DPD simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01599-2</doi><orcidid>https://orcid.org/0000-0002-0533-4291</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-06, Vol.136 (6), p.648, Article 648 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919599261 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Applied and Technical Physics Atomic Binary fluids Complex Systems Condensed Matter Physics Dynamic stability Finite volume method Fluids Mathematical and Computational Physics Mathematical models Molecular Numerical analysis Optical and Plasma Physics Physics Physics and Astronomy Regular Article Simulation Theoretical Velocity |
title | The study of Plateau–Rayleigh instability with DPD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20study%20of%20Plateau%E2%80%93Rayleigh%20instability%20with%20DPD&rft.jtitle=European%20physical%20journal%20plus&rft.au=Li,%20Yanggui&rft.date=2021-06-01&rft.volume=136&rft.issue=6&rft.spage=648&rft.pages=648-&rft.artnum=648&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01599-2&rft_dat=%3Cproquest_cross%3E2919599261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919599261&rft_id=info:pmid/&rfr_iscdi=true |