A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer
The successes of miniaturized electronic components are depending on the effective methods used to transfer the heat developed during its working environments. Suspension of nanoparticles in a base fluid is one such method used to control heat generation. Mixing of an optimal percentage of nanoparti...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2022-04, Vol.137 (4), p.482, Article 482 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 482 |
container_title | European physical journal plus |
container_volume | 137 |
creator | Devi, N. R. Moolya, Shivananda Öztop, Hakan F. Abu-Hamdeh, Nidal Padmanathan, P. Satheesh, A. |
description | The successes of miniaturized electronic components are depending on the effective methods used to transfer the heat developed during its working environments. Suspension of nanoparticles in a base fluid is one such method used to control heat generation. Mixing of an optimal percentage of nanoparticles such as Cu, Ag, Al
2
O
3
, TiO
2
, SiC, Fe
3
O
4,
and CNT with base fluids is called nanofluids. Ferrofluids are the topic of interest because of the unavailability of naturally accessible magnetic liquids. Augmentation in the thermophysical property of the ferrofluid by considering the known volume with the base fluid made the researcher work on this topic. Recent applications of ferrofluid in the areas like biomedical, microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), heat transfer agents, and dampers increase the interest of scientists. Another method of refining the thermal performance of the system is using a porous medium. The study of the generation of entropy and heat and mass transfer enhancement using nanoparticle and porous media is a new area of research nowadays. The use of nanofluid along with the magnetic field finds maximum application in medicine, MEMS, heat exchanges, lubrication, and solar collectors. A comprehensive review of the earlier research has been made by considering the MHD effect on entropy generation and heat and mass transfer studies with ferrofluid flows are presented in this paper. Also, the cavity of different shapes, different heating positions, and blocks inside the cavities are summarized in this review study. |
doi_str_mv | 10.1140/epjp/s13360-022-02616-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919598126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919598126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6a9c4e560c409dac5a74adcc24af24f83ba1885c8ae210c58100a10b381bed113</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsGh_gwHPazPZ7DZ7LPWjQsWLnkOanbRbarIm2Zb-e1NX0JsDYXJ4n3fgybIboHcAnE6w23aTAEVR0Zwyll4FVS7OshGDmuYl5_z8z_8yG4ewpWl4DbzmowxnxOO-xQNxlhj03pld3zaBHNq4IXGDBI1BHYkz5GVxT5RtCNroXXcka7ToVWwT2fRIoiPa2X0Kt3skG1SRRK9sSK3X2YVRu4Djn32VvT8-vM0X-fL16Xk-W-a6KHjMK1VrjmVFNad1o3Spplw1WjOuDONGFCsFQpRaKGRAdSmAUgV0VQhYYQNQXGW3Q2_n3WePIcqt671NJyWroS5rAaxKqemQ0t6F4NHIzrcfyh8lUHnSKk9a5aBVJq3yW6sUiRQDGRJh1-h_-_9DvwAnTn8J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919598126</pqid></control><display><type>article</type><title>A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Devi, N. R. ; Moolya, Shivananda ; Öztop, Hakan F. ; Abu-Hamdeh, Nidal ; Padmanathan, P. ; Satheesh, A.</creator><creatorcontrib>Devi, N. R. ; Moolya, Shivananda ; Öztop, Hakan F. ; Abu-Hamdeh, Nidal ; Padmanathan, P. ; Satheesh, A.</creatorcontrib><description>The successes of miniaturized electronic components are depending on the effective methods used to transfer the heat developed during its working environments. Suspension of nanoparticles in a base fluid is one such method used to control heat generation. Mixing of an optimal percentage of nanoparticles such as Cu, Ag, Al
2
O
3
, TiO
2
, SiC, Fe
3
O
4,
and CNT with base fluids is called nanofluids. Ferrofluids are the topic of interest because of the unavailability of naturally accessible magnetic liquids. Augmentation in the thermophysical property of the ferrofluid by considering the known volume with the base fluid made the researcher work on this topic. Recent applications of ferrofluid in the areas like biomedical, microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), heat transfer agents, and dampers increase the interest of scientists. Another method of refining the thermal performance of the system is using a porous medium. The study of the generation of entropy and heat and mass transfer enhancement using nanoparticle and porous media is a new area of research nowadays. The use of nanofluid along with the magnetic field finds maximum application in medicine, MEMS, heat exchanges, lubrication, and solar collectors. A comprehensive review of the earlier research has been made by considering the MHD effect on entropy generation and heat and mass transfer studies with ferrofluid flows are presented in this paper. Also, the cavity of different shapes, different heating positions, and blocks inside the cavities are summarized in this review study.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-02616-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum oxide ; Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Convective heat transfer ; Dampers ; Electronic components ; Entropy ; Ferrofluids ; Friction ; Heat exchange ; Heat generation ; Heat transfer ; Holes ; Investigations ; Iron oxides ; Magnetic fields ; Magnetic fluids ; Magnetic properties ; Magnetohydrodynamics ; Mass transfer ; Mathematical and Computational Physics ; Microelectromechanical systems ; Molecular ; Nanoelectromechanical systems ; Nanofluids ; Nanoparticles ; Optical and Plasma Physics ; Optimization ; Physics ; Physics and Astronomy ; Porous media ; Radiation ; Review ; Solar collectors ; Theoretical ; Thermophysical properties ; Titanium dioxide</subject><ispartof>European physical journal plus, 2022-04, Vol.137 (4), p.482, Article 482</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6a9c4e560c409dac5a74adcc24af24f83ba1885c8ae210c58100a10b381bed113</citedby><cites>FETCH-LOGICAL-c334t-6a9c4e560c409dac5a74adcc24af24f83ba1885c8ae210c58100a10b381bed113</cites><orcidid>0000-0001-5045-5263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-02616-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919598126?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Devi, N. R.</creatorcontrib><creatorcontrib>Moolya, Shivananda</creatorcontrib><creatorcontrib>Öztop, Hakan F.</creatorcontrib><creatorcontrib>Abu-Hamdeh, Nidal</creatorcontrib><creatorcontrib>Padmanathan, P.</creatorcontrib><creatorcontrib>Satheesh, A.</creatorcontrib><title>A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The successes of miniaturized electronic components are depending on the effective methods used to transfer the heat developed during its working environments. Suspension of nanoparticles in a base fluid is one such method used to control heat generation. Mixing of an optimal percentage of nanoparticles such as Cu, Ag, Al
2
O
3
, TiO
2
, SiC, Fe
3
O
4,
and CNT with base fluids is called nanofluids. Ferrofluids are the topic of interest because of the unavailability of naturally accessible magnetic liquids. Augmentation in the thermophysical property of the ferrofluid by considering the known volume with the base fluid made the researcher work on this topic. Recent applications of ferrofluid in the areas like biomedical, microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), heat transfer agents, and dampers increase the interest of scientists. Another method of refining the thermal performance of the system is using a porous medium. The study of the generation of entropy and heat and mass transfer enhancement using nanoparticle and porous media is a new area of research nowadays. The use of nanofluid along with the magnetic field finds maximum application in medicine, MEMS, heat exchanges, lubrication, and solar collectors. A comprehensive review of the earlier research has been made by considering the MHD effect on entropy generation and heat and mass transfer studies with ferrofluid flows are presented in this paper. Also, the cavity of different shapes, different heating positions, and blocks inside the cavities are summarized in this review study.</description><subject>Aluminum oxide</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Convective heat transfer</subject><subject>Dampers</subject><subject>Electronic components</subject><subject>Entropy</subject><subject>Ferrofluids</subject><subject>Friction</subject><subject>Heat exchange</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Investigations</subject><subject>Iron oxides</subject><subject>Magnetic fields</subject><subject>Magnetic fluids</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Mass transfer</subject><subject>Mathematical and Computational Physics</subject><subject>Microelectromechanical systems</subject><subject>Molecular</subject><subject>Nanoelectromechanical systems</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porous media</subject><subject>Radiation</subject><subject>Review</subject><subject>Solar collectors</subject><subject>Theoretical</subject><subject>Thermophysical properties</subject><subject>Titanium dioxide</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LAzEQhhdRsGh_gwHPazPZ7DZ7LPWjQsWLnkOanbRbarIm2Zb-e1NX0JsDYXJ4n3fgybIboHcAnE6w23aTAEVR0Zwyll4FVS7OshGDmuYl5_z8z_8yG4ewpWl4DbzmowxnxOO-xQNxlhj03pld3zaBHNq4IXGDBI1BHYkz5GVxT5RtCNroXXcka7ToVWwT2fRIoiPa2X0Kt3skG1SRRK9sSK3X2YVRu4Djn32VvT8-vM0X-fL16Xk-W-a6KHjMK1VrjmVFNad1o3Spplw1WjOuDONGFCsFQpRaKGRAdSmAUgV0VQhYYQNQXGW3Q2_n3WePIcqt671NJyWroS5rAaxKqemQ0t6F4NHIzrcfyh8lUHnSKk9a5aBVJq3yW6sUiRQDGRJh1-h_-_9DvwAnTn8J</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Devi, N. R.</creator><creator>Moolya, Shivananda</creator><creator>Öztop, Hakan F.</creator><creator>Abu-Hamdeh, Nidal</creator><creator>Padmanathan, P.</creator><creator>Satheesh, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5045-5263</orcidid></search><sort><creationdate>20220401</creationdate><title>A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer</title><author>Devi, N. R. ; Moolya, Shivananda ; Öztop, Hakan F. ; Abu-Hamdeh, Nidal ; Padmanathan, P. ; Satheesh, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6a9c4e560c409dac5a74adcc24af24f83ba1885c8ae210c58100a10b381bed113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Convective heat transfer</topic><topic>Dampers</topic><topic>Electronic components</topic><topic>Entropy</topic><topic>Ferrofluids</topic><topic>Friction</topic><topic>Heat exchange</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Investigations</topic><topic>Iron oxides</topic><topic>Magnetic fields</topic><topic>Magnetic fluids</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Mass transfer</topic><topic>Mathematical and Computational Physics</topic><topic>Microelectromechanical systems</topic><topic>Molecular</topic><topic>Nanoelectromechanical systems</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porous media</topic><topic>Radiation</topic><topic>Review</topic><topic>Solar collectors</topic><topic>Theoretical</topic><topic>Thermophysical properties</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, N. R.</creatorcontrib><creatorcontrib>Moolya, Shivananda</creatorcontrib><creatorcontrib>Öztop, Hakan F.</creatorcontrib><creatorcontrib>Abu-Hamdeh, Nidal</creatorcontrib><creatorcontrib>Padmanathan, P.</creatorcontrib><creatorcontrib>Satheesh, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, N. R.</au><au>Moolya, Shivananda</au><au>Öztop, Hakan F.</au><au>Abu-Hamdeh, Nidal</au><au>Padmanathan, P.</au><au>Satheesh, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>137</volume><issue>4</issue><spage>482</spage><pages>482-</pages><artnum>482</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The successes of miniaturized electronic components are depending on the effective methods used to transfer the heat developed during its working environments. Suspension of nanoparticles in a base fluid is one such method used to control heat generation. Mixing of an optimal percentage of nanoparticles such as Cu, Ag, Al
2
O
3
, TiO
2
, SiC, Fe
3
O
4,
and CNT with base fluids is called nanofluids. Ferrofluids are the topic of interest because of the unavailability of naturally accessible magnetic liquids. Augmentation in the thermophysical property of the ferrofluid by considering the known volume with the base fluid made the researcher work on this topic. Recent applications of ferrofluid in the areas like biomedical, microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), heat transfer agents, and dampers increase the interest of scientists. Another method of refining the thermal performance of the system is using a porous medium. The study of the generation of entropy and heat and mass transfer enhancement using nanoparticle and porous media is a new area of research nowadays. The use of nanofluid along with the magnetic field finds maximum application in medicine, MEMS, heat exchanges, lubrication, and solar collectors. A comprehensive review of the earlier research has been made by considering the MHD effect on entropy generation and heat and mass transfer studies with ferrofluid flows are presented in this paper. Also, the cavity of different shapes, different heating positions, and blocks inside the cavities are summarized in this review study.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-02616-8</doi><orcidid>https://orcid.org/0000-0001-5045-5263</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2022-04, Vol.137 (4), p.482, Article 482 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919598126 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Aluminum oxide Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Convective heat transfer Dampers Electronic components Entropy Ferrofluids Friction Heat exchange Heat generation Heat transfer Holes Investigations Iron oxides Magnetic fields Magnetic fluids Magnetic properties Magnetohydrodynamics Mass transfer Mathematical and Computational Physics Microelectromechanical systems Molecular Nanoelectromechanical systems Nanofluids Nanoparticles Optical and Plasma Physics Optimization Physics Physics and Astronomy Porous media Radiation Review Solar collectors Theoretical Thermophysical properties Titanium dioxide |
title | A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20ferrofluids%20with%20the%20effect%20of%20MHD%20and%20entropy%20generation%20due%20to%20convective%20heat%20transfer&rft.jtitle=European%20physical%20journal%20plus&rft.au=Devi,%20N.%20R.&rft.date=2022-04-01&rft.volume=137&rft.issue=4&rft.spage=482&rft.pages=482-&rft.artnum=482&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-02616-8&rft_dat=%3Cproquest_cross%3E2919598126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919598126&rft_id=info:pmid/&rfr_iscdi=true |