Multiple feedback based adversarial collaborative filtering with aesthetics
Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious...
Gespeichert in:
Veröffentlicht in: | International journal of multimedia information retrieval 2023-06, Vol.12 (1), p.9, Article 9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | International journal of multimedia information retrieval |
container_volume | 12 |
creator | Wu, Zhefu Ma, Yuhang Cao, Junzhuo Paul, Agyemang Li, Xiang |
description | Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics. |
doi_str_mv | 10.1007/s13735-023-00273-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919595520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919595520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-62ae0e8221fecde57dd1ab489771154f95fcc89e6268f40beb0beef8a3a884e23</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEtPYF-BUiXMgcZsmPaKJf2KIC0jcojR1WEZZS9Jt4tuTUQQ3LFn24T0_-UfIKWfnnDF5EXkuc0EZ5JQxkDndHZAJ8ApoWcLL4e_O-TGZxbhiqRSUnMkJuX_YtIPvW8wcYlMb-5bVJmKTmWaLIZrgTZvZrm1N3QUz-G0S-nbA4Nev2c4Py8xgHJY4eBtPyJEzbcTZz5yS5-urp_ktXTze3M0vF9SCZAMtwSBDBcAd2gaFbBpu6kJVUnIuClcJZ62qsIRSuYLVWKdGp0xulCoQ8ik5G-_2ofvYpHi96jZhnSI1VLwSlRDAkgpGlQ1djAGd7oN_N-FTc6b33PTITSdu-pub3iVTPppiv_8Qw9_pf1xfVjpyIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919595520</pqid></control><display><type>article</type><title>Multiple feedback based adversarial collaborative filtering with aesthetics</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Wu, Zhefu ; Ma, Yuhang ; Cao, Junzhuo ; Paul, Agyemang ; Li, Xiang</creator><creatorcontrib>Wu, Zhefu ; Ma, Yuhang ; Cao, Junzhuo ; Paul, Agyemang ; Li, Xiang</creatorcontrib><description>Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics.</description><identifier>ISSN: 2192-6611</identifier><identifier>EISSN: 2192-662X</identifier><identifier>DOI: 10.1007/s13735-023-00273-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aesthetics ; Algorithms ; Collaboration ; Computer Science ; Consumers ; Customization ; Data Mining and Knowledge Discovery ; Database Management ; Feedback ; Filtration ; Image Processing and Computer Vision ; Information Storage and Retrieval ; Information Systems Applications (incl.Internet) ; Learning ; Minimax technique ; Multimedia Information Systems ; Positive feedback ; Preferences ; Ratings & rankings ; Recommender systems ; Regular Paper ; Regularization ; Resilience</subject><ispartof>International journal of multimedia information retrieval, 2023-06, Vol.12 (1), p.9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-62ae0e8221fecde57dd1ab489771154f95fcc89e6268f40beb0beef8a3a884e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13735-023-00273-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919595520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Ma, Yuhang</creatorcontrib><creatorcontrib>Cao, Junzhuo</creatorcontrib><creatorcontrib>Paul, Agyemang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><title>Multiple feedback based adversarial collaborative filtering with aesthetics</title><title>International journal of multimedia information retrieval</title><addtitle>Int J Multimed Info Retr</addtitle><description>Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics.</description><subject>Aesthetics</subject><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Consumers</subject><subject>Customization</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Feedback</subject><subject>Filtration</subject><subject>Image Processing and Computer Vision</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Learning</subject><subject>Minimax technique</subject><subject>Multimedia Information Systems</subject><subject>Positive feedback</subject><subject>Preferences</subject><subject>Ratings & rankings</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Regularization</subject><subject>Resilience</subject><issn>2192-6611</issn><issn>2192-662X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9PwzAMxSMEEtPYF-BUiXMgcZsmPaKJf2KIC0jcojR1WEZZS9Jt4tuTUQQ3LFn24T0_-UfIKWfnnDF5EXkuc0EZ5JQxkDndHZAJ8ApoWcLL4e_O-TGZxbhiqRSUnMkJuX_YtIPvW8wcYlMb-5bVJmKTmWaLIZrgTZvZrm1N3QUz-G0S-nbA4Nev2c4Py8xgHJY4eBtPyJEzbcTZz5yS5-urp_ktXTze3M0vF9SCZAMtwSBDBcAd2gaFbBpu6kJVUnIuClcJZ62qsIRSuYLVWKdGp0xulCoQ8ik5G-_2ofvYpHi96jZhnSI1VLwSlRDAkgpGlQ1djAGd7oN_N-FTc6b33PTITSdu-pub3iVTPppiv_8Qw9_pf1xfVjpyIQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wu, Zhefu</creator><creator>Ma, Yuhang</creator><creator>Cao, Junzhuo</creator><creator>Paul, Agyemang</creator><creator>Li, Xiang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230601</creationdate><title>Multiple feedback based adversarial collaborative filtering with aesthetics</title><author>Wu, Zhefu ; Ma, Yuhang ; Cao, Junzhuo ; Paul, Agyemang ; Li, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-62ae0e8221fecde57dd1ab489771154f95fcc89e6268f40beb0beef8a3a884e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aesthetics</topic><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Consumers</topic><topic>Customization</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Feedback</topic><topic>Filtration</topic><topic>Image Processing and Computer Vision</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Learning</topic><topic>Minimax technique</topic><topic>Multimedia Information Systems</topic><topic>Positive feedback</topic><topic>Preferences</topic><topic>Ratings & rankings</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Regularization</topic><topic>Resilience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Ma, Yuhang</creatorcontrib><creatorcontrib>Cao, Junzhuo</creatorcontrib><creatorcontrib>Paul, Agyemang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of multimedia information retrieval</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhefu</au><au>Ma, Yuhang</au><au>Cao, Junzhuo</au><au>Paul, Agyemang</au><au>Li, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple feedback based adversarial collaborative filtering with aesthetics</atitle><jtitle>International journal of multimedia information retrieval</jtitle><stitle>Int J Multimed Info Retr</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>2192-6611</issn><eissn>2192-662X</eissn><abstract>Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s13735-023-00273-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6611 |
ispartof | International journal of multimedia information retrieval, 2023-06, Vol.12 (1), p.9, Article 9 |
issn | 2192-6611 2192-662X |
language | eng |
recordid | cdi_proquest_journals_2919595520 |
source | SpringerLink Journals; ProQuest Central |
subjects | Aesthetics Algorithms Collaboration Computer Science Consumers Customization Data Mining and Knowledge Discovery Database Management Feedback Filtration Image Processing and Computer Vision Information Storage and Retrieval Information Systems Applications (incl.Internet) Learning Minimax technique Multimedia Information Systems Positive feedback Preferences Ratings & rankings Recommender systems Regular Paper Regularization Resilience |
title | Multiple feedback based adversarial collaborative filtering with aesthetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20feedback%20based%20adversarial%20collaborative%20filtering%20with%20aesthetics&rft.jtitle=International%20journal%20of%20multimedia%20information%20retrieval&rft.au=Wu,%20Zhefu&rft.date=2023-06-01&rft.volume=12&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=2192-6611&rft.eissn=2192-662X&rft_id=info:doi/10.1007/s13735-023-00273-w&rft_dat=%3Cproquest_cross%3E2919595520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919595520&rft_id=info:pmid/&rfr_iscdi=true |