Multiple feedback based adversarial collaborative filtering with aesthetics

Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multimedia information retrieval 2023-06, Vol.12 (1), p.9, Article 9
Hauptverfasser: Wu, Zhefu, Ma, Yuhang, Cao, Junzhuo, Paul, Agyemang, Li, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 9
container_title International journal of multimedia information retrieval
container_volume 12
creator Wu, Zhefu
Ma, Yuhang
Cao, Junzhuo
Paul, Agyemang
Li, Xiang
description Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics.
doi_str_mv 10.1007/s13735-023-00273-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919595520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919595520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-62ae0e8221fecde57dd1ab489771154f95fcc89e6268f40beb0beef8a3a884e23</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEtPYF-BUiXMgcZsmPaKJf2KIC0jcojR1WEZZS9Jt4tuTUQQ3LFn24T0_-UfIKWfnnDF5EXkuc0EZ5JQxkDndHZAJ8ApoWcLL4e_O-TGZxbhiqRSUnMkJuX_YtIPvW8wcYlMb-5bVJmKTmWaLIZrgTZvZrm1N3QUz-G0S-nbA4Nev2c4Py8xgHJY4eBtPyJEzbcTZz5yS5-urp_ktXTze3M0vF9SCZAMtwSBDBcAd2gaFbBpu6kJVUnIuClcJZ62qsIRSuYLVWKdGp0xulCoQ8ik5G-_2ofvYpHi96jZhnSI1VLwSlRDAkgpGlQ1djAGd7oN_N-FTc6b33PTITSdu-pub3iVTPppiv_8Qw9_pf1xfVjpyIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919595520</pqid></control><display><type>article</type><title>Multiple feedback based adversarial collaborative filtering with aesthetics</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Wu, Zhefu ; Ma, Yuhang ; Cao, Junzhuo ; Paul, Agyemang ; Li, Xiang</creator><creatorcontrib>Wu, Zhefu ; Ma, Yuhang ; Cao, Junzhuo ; Paul, Agyemang ; Li, Xiang</creatorcontrib><description>Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics.</description><identifier>ISSN: 2192-6611</identifier><identifier>EISSN: 2192-662X</identifier><identifier>DOI: 10.1007/s13735-023-00273-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aesthetics ; Algorithms ; Collaboration ; Computer Science ; Consumers ; Customization ; Data Mining and Knowledge Discovery ; Database Management ; Feedback ; Filtration ; Image Processing and Computer Vision ; Information Storage and Retrieval ; Information Systems Applications (incl.Internet) ; Learning ; Minimax technique ; Multimedia Information Systems ; Positive feedback ; Preferences ; Ratings &amp; rankings ; Recommender systems ; Regular Paper ; Regularization ; Resilience</subject><ispartof>International journal of multimedia information retrieval, 2023-06, Vol.12 (1), p.9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-62ae0e8221fecde57dd1ab489771154f95fcc89e6268f40beb0beef8a3a884e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13735-023-00273-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919595520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Ma, Yuhang</creatorcontrib><creatorcontrib>Cao, Junzhuo</creatorcontrib><creatorcontrib>Paul, Agyemang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><title>Multiple feedback based adversarial collaborative filtering with aesthetics</title><title>International journal of multimedia information retrieval</title><addtitle>Int J Multimed Info Retr</addtitle><description>Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics.</description><subject>Aesthetics</subject><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Consumers</subject><subject>Customization</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Feedback</subject><subject>Filtration</subject><subject>Image Processing and Computer Vision</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Learning</subject><subject>Minimax technique</subject><subject>Multimedia Information Systems</subject><subject>Positive feedback</subject><subject>Preferences</subject><subject>Ratings &amp; rankings</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Regularization</subject><subject>Resilience</subject><issn>2192-6611</issn><issn>2192-662X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9PwzAMxSMEEtPYF-BUiXMgcZsmPaKJf2KIC0jcojR1WEZZS9Jt4tuTUQQ3LFn24T0_-UfIKWfnnDF5EXkuc0EZ5JQxkDndHZAJ8ApoWcLL4e_O-TGZxbhiqRSUnMkJuX_YtIPvW8wcYlMb-5bVJmKTmWaLIZrgTZvZrm1N3QUz-G0S-nbA4Nev2c4Py8xgHJY4eBtPyJEzbcTZz5yS5-urp_ktXTze3M0vF9SCZAMtwSBDBcAd2gaFbBpu6kJVUnIuClcJZ62qsIRSuYLVWKdGp0xulCoQ8ik5G-_2ofvYpHi96jZhnSI1VLwSlRDAkgpGlQ1djAGd7oN_N-FTc6b33PTITSdu-pub3iVTPppiv_8Qw9_pf1xfVjpyIQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wu, Zhefu</creator><creator>Ma, Yuhang</creator><creator>Cao, Junzhuo</creator><creator>Paul, Agyemang</creator><creator>Li, Xiang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230601</creationdate><title>Multiple feedback based adversarial collaborative filtering with aesthetics</title><author>Wu, Zhefu ; Ma, Yuhang ; Cao, Junzhuo ; Paul, Agyemang ; Li, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-62ae0e8221fecde57dd1ab489771154f95fcc89e6268f40beb0beef8a3a884e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aesthetics</topic><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Consumers</topic><topic>Customization</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Feedback</topic><topic>Filtration</topic><topic>Image Processing and Computer Vision</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Learning</topic><topic>Minimax technique</topic><topic>Multimedia Information Systems</topic><topic>Positive feedback</topic><topic>Preferences</topic><topic>Ratings &amp; rankings</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Regularization</topic><topic>Resilience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Ma, Yuhang</creatorcontrib><creatorcontrib>Cao, Junzhuo</creatorcontrib><creatorcontrib>Paul, Agyemang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of multimedia information retrieval</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhefu</au><au>Ma, Yuhang</au><au>Cao, Junzhuo</au><au>Paul, Agyemang</au><au>Li, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple feedback based adversarial collaborative filtering with aesthetics</atitle><jtitle>International journal of multimedia information retrieval</jtitle><stitle>Int J Multimed Info Retr</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>2192-6611</issn><eissn>2192-662X</eissn><abstract>Visual-aware personalized recommendation systems can estimate the potential demand by evaluating consumer personalized preferences. In general, consumer feedback data is deduced from either explicit feedback or implicit feedback. However, explicit and implicit feedback raises the chance of malicious operation or misoperation, which can lead to deviations in recommended outcomes. Adversarial learning, a regularization approach that can resist disturbances, could be a promising choice for enhancing model resilience. We propose a novel adversarial collaborative filtering with aesthetics (ACFA) for the visual recommendation that utilizes adversarial learning to improve resilience and performance in the case of perturbation. The ACFA algorithm applies three types of input to the visual Bayesian personalized ranking: negative, unobserved, and positive feedback. Through feedbacks at various levels, it uses a probabilistic approach to obtain consumer personalized preferences. Since in visual recommendation, the aesthetic data in determining consumer preferences on product is critical, we construct the consumer personalized preferences model with aesthetic elements, and then use them to enhance the sampling quality when training the algorithm. To mitigate the negative effects of feedback noise, We use minimax adversarial learning to learn the ACFA objective function. Experiments using two datasets demonstrate that the ACFA model outperforms state-of-the-art algorithms on two metrics.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s13735-023-00273-w</doi></addata></record>
fulltext fulltext
identifier ISSN: 2192-6611
ispartof International journal of multimedia information retrieval, 2023-06, Vol.12 (1), p.9, Article 9
issn 2192-6611
2192-662X
language eng
recordid cdi_proquest_journals_2919595520
source SpringerLink Journals; ProQuest Central
subjects Aesthetics
Algorithms
Collaboration
Computer Science
Consumers
Customization
Data Mining and Knowledge Discovery
Database Management
Feedback
Filtration
Image Processing and Computer Vision
Information Storage and Retrieval
Information Systems Applications (incl.Internet)
Learning
Minimax technique
Multimedia Information Systems
Positive feedback
Preferences
Ratings & rankings
Recommender systems
Regular Paper
Regularization
Resilience
title Multiple feedback based adversarial collaborative filtering with aesthetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20feedback%20based%20adversarial%20collaborative%20filtering%20with%20aesthetics&rft.jtitle=International%20journal%20of%20multimedia%20information%20retrieval&rft.au=Wu,%20Zhefu&rft.date=2023-06-01&rft.volume=12&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=2192-6611&rft.eissn=2192-662X&rft_id=info:doi/10.1007/s13735-023-00273-w&rft_dat=%3Cproquest_cross%3E2919595520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919595520&rft_id=info:pmid/&rfr_iscdi=true