Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors
The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in...
Gespeichert in:
Veröffentlicht in: | SILICON 2022-11, Vol.14 (17), p.11109-11119 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11119 |
---|---|
container_issue | 17 |
container_start_page | 11109 |
container_title | SILICON |
container_volume | 14 |
creator | Suguna, M. Charumathi, V. Balamurugan, N. B. Hemalatha, M. Sriram Kumar, D. |
description | The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs. |
doi_str_mv | 10.1007/s12633-022-01841-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919594486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919594486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA52i-9iNHKa0KLV6qeAvZ7KSmtNma7Ar-e6MrenMuMzDvMwMPQpeMXjNKq5vEeCkEoZwTymrJCDtBE1ZXJVGK1ae_M305R7OUdjSX4FVdqgl6Xhv76gPgFZgYfNiSxiRo8XrY9550zQ5s798BPx57f_DJ9L4LuHN4M4QAe7z0sG_xwrkcw5toQvKp72K6QGfO7BPMfvoUPS0Xm_k9WT3ePcxvV8RyqXpibG2NZEXrGFAAJWQlGmmhMjVltjSiUFxJU5d5oYA3bVW6tjBcUNkap6iYoqvx7jF2bwOkXu-6IYb8UnPFVKGkzPAU8TFlY5dSBKeP0R9M_NCM6i-FelSos0L9rVCzDIkRSjkcthD_Tv9DfQKpCnQl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919594486</pqid></control><display><type>article</type><title>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Suguna, M. ; Charumathi, V. ; Balamurugan, N. B. ; Hemalatha, M. ; Sriram Kumar, D.</creator><creatorcontrib>Suguna, M. ; Charumathi, V. ; Balamurugan, N. B. ; Hemalatha, M. ; Sriram Kumar, D.</creatorcontrib><description>The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-022-01841-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial intelligence ; Chemistry ; Chemistry and Materials Science ; Design optimization ; Design parameters ; Electric fields ; Engineering schools ; Environmental Chemistry ; Field effect transistors ; Genetic algorithms ; Inorganic Chemistry ; Lasers ; Machine learning ; Materials Science ; Multiple objective analysis ; Optical Devices ; Optics ; Optimization techniques ; Original Paper ; Photonics ; Polymer Sciences ; Semiconductor devices ; Silicon ; Sorting algorithms ; Transistors ; Tunnels</subject><ispartof>SILICON, 2022-11, Vol.14 (17), p.11109-11119</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</citedby><cites>FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-022-01841-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919594486?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Suguna, M.</creatorcontrib><creatorcontrib>Charumathi, V.</creatorcontrib><creatorcontrib>Balamurugan, N. B.</creatorcontrib><creatorcontrib>Hemalatha, M.</creatorcontrib><creatorcontrib>Sriram Kumar, D.</creatorcontrib><title>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</title><title>SILICON</title><addtitle>Silicon</addtitle><description>The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs.</description><subject>Artificial intelligence</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Electric fields</subject><subject>Engineering schools</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Genetic algorithms</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Multiple objective analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Optimization techniques</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Sorting algorithms</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA52i-9iNHKa0KLV6qeAvZ7KSmtNma7Ar-e6MrenMuMzDvMwMPQpeMXjNKq5vEeCkEoZwTymrJCDtBE1ZXJVGK1ae_M305R7OUdjSX4FVdqgl6Xhv76gPgFZgYfNiSxiRo8XrY9550zQ5s798BPx57f_DJ9L4LuHN4M4QAe7z0sG_xwrkcw5toQvKp72K6QGfO7BPMfvoUPS0Xm_k9WT3ePcxvV8RyqXpibG2NZEXrGFAAJWQlGmmhMjVltjSiUFxJU5d5oYA3bVW6tjBcUNkap6iYoqvx7jF2bwOkXu-6IYb8UnPFVKGkzPAU8TFlY5dSBKeP0R9M_NCM6i-FelSos0L9rVCzDIkRSjkcthD_Tv9DfQKpCnQl</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Suguna, M.</creator><creator>Charumathi, V.</creator><creator>Balamurugan, N. B.</creator><creator>Hemalatha, M.</creator><creator>Sriram Kumar, D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20221101</creationdate><title>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</title><author>Suguna, M. ; Charumathi, V. ; Balamurugan, N. B. ; Hemalatha, M. ; Sriram Kumar, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Electric fields</topic><topic>Engineering schools</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Genetic algorithms</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Multiple objective analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Optimization techniques</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Sorting algorithms</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suguna, M.</creatorcontrib><creatorcontrib>Charumathi, V.</creatorcontrib><creatorcontrib>Balamurugan, N. B.</creatorcontrib><creatorcontrib>Hemalatha, M.</creatorcontrib><creatorcontrib>Sriram Kumar, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suguna, M.</au><au>Charumathi, V.</au><au>Balamurugan, N. B.</au><au>Hemalatha, M.</au><au>Sriram Kumar, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>11109</spage><epage>11119</epage><pages>11109-11119</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-022-01841-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2022-11, Vol.14 (17), p.11109-11119 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_2919594486 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial intelligence Chemistry Chemistry and Materials Science Design optimization Design parameters Electric fields Engineering schools Environmental Chemistry Field effect transistors Genetic algorithms Inorganic Chemistry Lasers Machine learning Materials Science Multiple objective analysis Optical Devices Optics Optimization techniques Original Paper Photonics Polymer Sciences Semiconductor devices Silicon Sorting algorithms Transistors Tunnels |
title | Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-based%20Multi-objective%20Optimisation%20of%20Tunnel%20Field%20Effect%20Transistors&rft.jtitle=SILICON&rft.au=Suguna,%20M.&rft.date=2022-11-01&rft.volume=14&rft.issue=17&rft.spage=11109&rft.epage=11119&rft.pages=11109-11119&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-022-01841-1&rft_dat=%3Cproquest_cross%3E2919594486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919594486&rft_id=info:pmid/&rfr_iscdi=true |