Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors

The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2022-11, Vol.14 (17), p.11109-11119
Hauptverfasser: Suguna, M., Charumathi, V., Balamurugan, N. B., Hemalatha, M., Sriram Kumar, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11119
container_issue 17
container_start_page 11109
container_title SILICON
container_volume 14
creator Suguna, M.
Charumathi, V.
Balamurugan, N. B.
Hemalatha, M.
Sriram Kumar, D.
description The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs.
doi_str_mv 10.1007/s12633-022-01841-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919594486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919594486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA52i-9iNHKa0KLV6qeAvZ7KSmtNma7Ar-e6MrenMuMzDvMwMPQpeMXjNKq5vEeCkEoZwTymrJCDtBE1ZXJVGK1ae_M305R7OUdjSX4FVdqgl6Xhv76gPgFZgYfNiSxiRo8XrY9550zQ5s798BPx57f_DJ9L4LuHN4M4QAe7z0sG_xwrkcw5toQvKp72K6QGfO7BPMfvoUPS0Xm_k9WT3ePcxvV8RyqXpibG2NZEXrGFAAJWQlGmmhMjVltjSiUFxJU5d5oYA3bVW6tjBcUNkap6iYoqvx7jF2bwOkXu-6IYb8UnPFVKGkzPAU8TFlY5dSBKeP0R9M_NCM6i-FelSos0L9rVCzDIkRSjkcthD_Tv9DfQKpCnQl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919594486</pqid></control><display><type>article</type><title>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Suguna, M. ; Charumathi, V. ; Balamurugan, N. B. ; Hemalatha, M. ; Sriram Kumar, D.</creator><creatorcontrib>Suguna, M. ; Charumathi, V. ; Balamurugan, N. B. ; Hemalatha, M. ; Sriram Kumar, D.</creatorcontrib><description>The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-022-01841-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial intelligence ; Chemistry ; Chemistry and Materials Science ; Design optimization ; Design parameters ; Electric fields ; Engineering schools ; Environmental Chemistry ; Field effect transistors ; Genetic algorithms ; Inorganic Chemistry ; Lasers ; Machine learning ; Materials Science ; Multiple objective analysis ; Optical Devices ; Optics ; Optimization techniques ; Original Paper ; Photonics ; Polymer Sciences ; Semiconductor devices ; Silicon ; Sorting algorithms ; Transistors ; Tunnels</subject><ispartof>SILICON, 2022-11, Vol.14 (17), p.11109-11119</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</citedby><cites>FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-022-01841-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919594486?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Suguna, M.</creatorcontrib><creatorcontrib>Charumathi, V.</creatorcontrib><creatorcontrib>Balamurugan, N. B.</creatorcontrib><creatorcontrib>Hemalatha, M.</creatorcontrib><creatorcontrib>Sriram Kumar, D.</creatorcontrib><title>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</title><title>SILICON</title><addtitle>Silicon</addtitle><description>The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs.</description><subject>Artificial intelligence</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Electric fields</subject><subject>Engineering schools</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Genetic algorithms</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Multiple objective analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Optimization techniques</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Sorting algorithms</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA52i-9iNHKa0KLV6qeAvZ7KSmtNma7Ar-e6MrenMuMzDvMwMPQpeMXjNKq5vEeCkEoZwTymrJCDtBE1ZXJVGK1ae_M305R7OUdjSX4FVdqgl6Xhv76gPgFZgYfNiSxiRo8XrY9550zQ5s798BPx57f_DJ9L4LuHN4M4QAe7z0sG_xwrkcw5toQvKp72K6QGfO7BPMfvoUPS0Xm_k9WT3ePcxvV8RyqXpibG2NZEXrGFAAJWQlGmmhMjVltjSiUFxJU5d5oYA3bVW6tjBcUNkap6iYoqvx7jF2bwOkXu-6IYb8UnPFVKGkzPAU8TFlY5dSBKeP0R9M_NCM6i-FelSos0L9rVCzDIkRSjkcthD_Tv9DfQKpCnQl</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Suguna, M.</creator><creator>Charumathi, V.</creator><creator>Balamurugan, N. B.</creator><creator>Hemalatha, M.</creator><creator>Sriram Kumar, D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20221101</creationdate><title>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</title><author>Suguna, M. ; Charumathi, V. ; Balamurugan, N. B. ; Hemalatha, M. ; Sriram Kumar, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ac8ca415df1e0ee93473b4ce7a801c6a359294a863479e2bd76fd5a2304daf903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Electric fields</topic><topic>Engineering schools</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Genetic algorithms</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Multiple objective analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Optimization techniques</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Sorting algorithms</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suguna, M.</creatorcontrib><creatorcontrib>Charumathi, V.</creatorcontrib><creatorcontrib>Balamurugan, N. B.</creatorcontrib><creatorcontrib>Hemalatha, M.</creatorcontrib><creatorcontrib>Sriram Kumar, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suguna, M.</au><au>Charumathi, V.</au><au>Balamurugan, N. B.</au><au>Hemalatha, M.</au><au>Sriram Kumar, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>11109</spage><epage>11119</epage><pages>11109-11119</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>The ever-increasing growth of semiconductor industries owing to nano sizing of modern electronic devices intensifies the need to handle enormous data. It is necessary to rely on the process of creating algorithms that extract useful information from data, automatically. The majority of data found in the real world are conflicting in nature and must be optimized to attain the demanded target. In the proposed work a Machine Learning (ML) based framework is developed for constructing the best Tunnel FETs on replacing the computationally intensive TCAD simulations. To optimize the design parameters and objectives, a Multi-Objective Optimization (MOO) technique based on Machine Learning and a natural selection approach of non-dominated sorting genetic algorithm-II (NSGA-II) is presented. TFETs optimum design together with the tradeoff between Natural Length, and Vertical Electric Field are automatically identified. The acquired results are compared to TCAD results for demonstrating the ML wrapped TFETs design in the MOO framework is advanced and applied to forecast optimal solutions for the design of TFETs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-022-01841-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2022-11, Vol.14 (17), p.11109-11119
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2919594486
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial intelligence
Chemistry
Chemistry and Materials Science
Design optimization
Design parameters
Electric fields
Engineering schools
Environmental Chemistry
Field effect transistors
Genetic algorithms
Inorganic Chemistry
Lasers
Machine learning
Materials Science
Multiple objective analysis
Optical Devices
Optics
Optimization techniques
Original Paper
Photonics
Polymer Sciences
Semiconductor devices
Silicon
Sorting algorithms
Transistors
Tunnels
title Machine Learning-based Multi-objective Optimisation of Tunnel Field Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-based%20Multi-objective%20Optimisation%20of%20Tunnel%20Field%20Effect%20Transistors&rft.jtitle=SILICON&rft.au=Suguna,%20M.&rft.date=2022-11-01&rft.volume=14&rft.issue=17&rft.spage=11109&rft.epage=11119&rft.pages=11109-11119&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-022-01841-1&rft_dat=%3Cproquest_cross%3E2919594486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919594486&rft_id=info:pmid/&rfr_iscdi=true