FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media

Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social Network Analysis and Mining 2023-03, Vol.13 (1), p.56, Article 56
Hauptverfasser: Ghorbanpour, Faeze, Ramezani, Maryam, Fazli, Mohammad Amin, Rabiee, Hamid R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 56
container_title Social Network Analysis and Mining
container_volume 13
creator Ghorbanpour, Faeze
Ramezani, Maryam
Fazli, Mohammad Amin
Rabiee, Hamid R.
description Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights.
doi_str_mv 10.1007/s13278-023-01065-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919545864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919545864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWGpfwFXAdTSZTG7upFgVioLoOp7JBafOpSYp0rd3tC5cncPh4z8_H0LnjF4yStVVZrxSmtCKE8qoFIQeoRnT0hBRS3P8bz9Fi5w3lE4Y54bKGXpbPT5fY8C57dsOUlv2GAaPS4IhxzH1IZEGcvAYtts0gnvHZcQ-lOAK7nddaUk_euhwhI-Ah_CVcTvgPLp2uvXBt3CGTiJ0OSz-5hy9rm5flvdk_XT3sLxZE8clL1M7GrXyFfOCmxDBO6MpFUIoCFXk4KQPdR1BgvJeNaLRWgWl6gDS1K7RfI4uDrlTzc9dyMVuxl0appe2MsyIWmhZT1R1oFwac04h2m1qe0h7y6j9kWkPMu0k0_7KtJR_A7baZ6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919545864</pqid></control><display><type>article</type><title>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ghorbanpour, Faeze ; Ramezani, Maryam ; Fazli, Mohammad Amin ; Rabiee, Hamid R.</creator><creatorcontrib>Ghorbanpour, Faeze ; Ramezani, Maryam ; Fazli, Mohammad Amin ; Rabiee, Hamid R.</creatorcontrib><description>Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights.</description><identifier>ISSN: 1869-5469</identifier><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-023-01065-0</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Digital media ; False information ; Multimodality ; Neural networks ; News ; Popularity ; Semantics ; Similarity ; Social media ; Social networks ; Transformers</subject><ispartof>Social Network Analysis and Mining, 2023-03, Vol.13 (1), p.56, Article 56</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</citedby><cites>FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919545864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Ghorbanpour, Faeze</creatorcontrib><creatorcontrib>Ramezani, Maryam</creatorcontrib><creatorcontrib>Fazli, Mohammad Amin</creatorcontrib><creatorcontrib>Rabiee, Hamid R.</creatorcontrib><title>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</title><title>Social Network Analysis and Mining</title><description>Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights.</description><subject>Algorithms</subject><subject>Digital media</subject><subject>False information</subject><subject>Multimodality</subject><subject>Neural networks</subject><subject>News</subject><subject>Popularity</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Social media</subject><subject>Social networks</subject><subject>Transformers</subject><issn>1869-5469</issn><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkMtKAzEUhoMoWGpfwFXAdTSZTG7upFgVioLoOp7JBafOpSYp0rd3tC5cncPh4z8_H0LnjF4yStVVZrxSmtCKE8qoFIQeoRnT0hBRS3P8bz9Fi5w3lE4Y54bKGXpbPT5fY8C57dsOUlv2GAaPS4IhxzH1IZEGcvAYtts0gnvHZcQ-lOAK7nddaUk_euhwhI-Ah_CVcTvgPLp2uvXBt3CGTiJ0OSz-5hy9rm5flvdk_XT3sLxZE8clL1M7GrXyFfOCmxDBO6MpFUIoCFXk4KQPdR1BgvJeNaLRWgWl6gDS1K7RfI4uDrlTzc9dyMVuxl0appe2MsyIWmhZT1R1oFwac04h2m1qe0h7y6j9kWkPMu0k0_7KtJR_A7baZ6s</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Ghorbanpour, Faeze</creator><creator>Ramezani, Maryam</creator><creator>Fazli, Mohammad Amin</creator><creator>Rabiee, Hamid R.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230328</creationdate><title>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</title><author>Ghorbanpour, Faeze ; Ramezani, Maryam ; Fazli, Mohammad Amin ; Rabiee, Hamid R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Digital media</topic><topic>False information</topic><topic>Multimodality</topic><topic>Neural networks</topic><topic>News</topic><topic>Popularity</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Social media</topic><topic>Social networks</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorbanpour, Faeze</creatorcontrib><creatorcontrib>Ramezani, Maryam</creatorcontrib><creatorcontrib>Fazli, Mohammad Amin</creatorcontrib><creatorcontrib>Rabiee, Hamid R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social Network Analysis and Mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorbanpour, Faeze</au><au>Ramezani, Maryam</au><au>Fazli, Mohammad Amin</au><au>Rabiee, Hamid R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</atitle><jtitle>Social Network Analysis and Mining</jtitle><date>2023-03-28</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>56</spage><pages>56-</pages><artnum>56</artnum><issn>1869-5469</issn><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13278-023-01065-0</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-5469
ispartof Social Network Analysis and Mining, 2023-03, Vol.13 (1), p.56, Article 56
issn 1869-5469
1869-5450
1869-5469
language eng
recordid cdi_proquest_journals_2919545864
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Digital media
False information
Multimodality
Neural networks
News
Popularity
Semantics
Similarity
Social media
Social networks
Transformers
title FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FNR:%20a%20similarity%20and%20transformer-based%20approach%20to%20detect%20multi-modal%20fake%20news%20in%20social%20media&rft.jtitle=Social%20Network%20Analysis%20and%20Mining&rft.au=Ghorbanpour,%20Faeze&rft.date=2023-03-28&rft.volume=13&rft.issue=1&rft.spage=56&rft.pages=56-&rft.artnum=56&rft.issn=1869-5469&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-023-01065-0&rft_dat=%3Cproquest_cross%3E2919545864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919545864&rft_id=info:pmid/&rfr_iscdi=true