FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media
Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventin...
Gespeichert in:
Veröffentlicht in: | Social Network Analysis and Mining 2023-03, Vol.13 (1), p.56, Article 56 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | Social Network Analysis and Mining |
container_volume | 13 |
creator | Ghorbanpour, Faeze Ramezani, Maryam Fazli, Mohammad Amin Rabiee, Hamid R. |
description | Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights. |
doi_str_mv | 10.1007/s13278-023-01065-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919545864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919545864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWGpfwFXAdTSZTG7upFgVioLoOp7JBafOpSYp0rd3tC5cncPh4z8_H0LnjF4yStVVZrxSmtCKE8qoFIQeoRnT0hBRS3P8bz9Fi5w3lE4Y54bKGXpbPT5fY8C57dsOUlv2GAaPS4IhxzH1IZEGcvAYtts0gnvHZcQ-lOAK7nddaUk_euhwhI-Ah_CVcTvgPLp2uvXBt3CGTiJ0OSz-5hy9rm5flvdk_XT3sLxZE8clL1M7GrXyFfOCmxDBO6MpFUIoCFXk4KQPdR1BgvJeNaLRWgWl6gDS1K7RfI4uDrlTzc9dyMVuxl0appe2MsyIWmhZT1R1oFwac04h2m1qe0h7y6j9kWkPMu0k0_7KtJR_A7baZ6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919545864</pqid></control><display><type>article</type><title>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ghorbanpour, Faeze ; Ramezani, Maryam ; Fazli, Mohammad Amin ; Rabiee, Hamid R.</creator><creatorcontrib>Ghorbanpour, Faeze ; Ramezani, Maryam ; Fazli, Mohammad Amin ; Rabiee, Hamid R.</creatorcontrib><description>Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights.</description><identifier>ISSN: 1869-5469</identifier><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-023-01065-0</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Digital media ; False information ; Multimodality ; Neural networks ; News ; Popularity ; Semantics ; Similarity ; Social media ; Social networks ; Transformers</subject><ispartof>Social Network Analysis and Mining, 2023-03, Vol.13 (1), p.56, Article 56</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</citedby><cites>FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919545864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Ghorbanpour, Faeze</creatorcontrib><creatorcontrib>Ramezani, Maryam</creatorcontrib><creatorcontrib>Fazli, Mohammad Amin</creatorcontrib><creatorcontrib>Rabiee, Hamid R.</creatorcontrib><title>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</title><title>Social Network Analysis and Mining</title><description>Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights.</description><subject>Algorithms</subject><subject>Digital media</subject><subject>False information</subject><subject>Multimodality</subject><subject>Neural networks</subject><subject>News</subject><subject>Popularity</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Social media</subject><subject>Social networks</subject><subject>Transformers</subject><issn>1869-5469</issn><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkMtKAzEUhoMoWGpfwFXAdTSZTG7upFgVioLoOp7JBafOpSYp0rd3tC5cncPh4z8_H0LnjF4yStVVZrxSmtCKE8qoFIQeoRnT0hBRS3P8bz9Fi5w3lE4Y54bKGXpbPT5fY8C57dsOUlv2GAaPS4IhxzH1IZEGcvAYtts0gnvHZcQ-lOAK7nddaUk_euhwhI-Ah_CVcTvgPLp2uvXBt3CGTiJ0OSz-5hy9rm5flvdk_XT3sLxZE8clL1M7GrXyFfOCmxDBO6MpFUIoCFXk4KQPdR1BgvJeNaLRWgWl6gDS1K7RfI4uDrlTzc9dyMVuxl0appe2MsyIWmhZT1R1oFwac04h2m1qe0h7y6j9kWkPMu0k0_7KtJR_A7baZ6s</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Ghorbanpour, Faeze</creator><creator>Ramezani, Maryam</creator><creator>Fazli, Mohammad Amin</creator><creator>Rabiee, Hamid R.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230328</creationdate><title>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</title><author>Ghorbanpour, Faeze ; Ramezani, Maryam ; Fazli, Mohammad Amin ; Rabiee, Hamid R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-540f87d21d539efadc98005557ae2f3ac6de44fa6a7dd7b5b887e774ea694cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Digital media</topic><topic>False information</topic><topic>Multimodality</topic><topic>Neural networks</topic><topic>News</topic><topic>Popularity</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Social media</topic><topic>Social networks</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorbanpour, Faeze</creatorcontrib><creatorcontrib>Ramezani, Maryam</creatorcontrib><creatorcontrib>Fazli, Mohammad Amin</creatorcontrib><creatorcontrib>Rabiee, Hamid R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social Network Analysis and Mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorbanpour, Faeze</au><au>Ramezani, Maryam</au><au>Fazli, Mohammad Amin</au><au>Rabiee, Hamid R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media</atitle><jtitle>Social Network Analysis and Mining</jtitle><date>2023-03-28</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>56</spage><pages>56-</pages><artnum>56</artnum><issn>1869-5469</issn><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Many people today get their news from social media. It is possible to propagate news using textual, visual, or multi-modal information. The popularity of social networks and their wide use by people make them attractive platforms for spreading fake news. Detecting fake news is essential to preventing its spread. Fake news can be a false article or a genuine article with misleading visual information. Adding an actual image to trustworthy unrelated news can also create a fake news story. In this paper, we propose a novel and efficient similarity and transformer-based detection algorithm called Fake News Revealer (FNR), which uses text and images of news to detect fake news. The algorithm uses contrastive loss to consider text and image relations and transformer models to extract contextual and semantic features. According to experiments on two public social media news data sets, the FNR algorithm competes with conventional methods and state-of-the-art fake news detection algorithms by adding a novel mechanism without adding extra parameters or weights.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13278-023-01065-0</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5469 |
ispartof | Social Network Analysis and Mining, 2023-03, Vol.13 (1), p.56, Article 56 |
issn | 1869-5469 1869-5450 1869-5469 |
language | eng |
recordid | cdi_proquest_journals_2919545864 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Digital media False information Multimodality Neural networks News Popularity Semantics Similarity Social media Social networks Transformers |
title | FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FNR:%20a%20similarity%20and%20transformer-based%20approach%20to%20detect%20multi-modal%20fake%20news%20in%20social%20media&rft.jtitle=Social%20Network%20Analysis%20and%20Mining&rft.au=Ghorbanpour,%20Faeze&rft.date=2023-03-28&rft.volume=13&rft.issue=1&rft.spage=56&rft.pages=56-&rft.artnum=56&rft.issn=1869-5469&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-023-01065-0&rft_dat=%3Cproquest_cross%3E2919545864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919545864&rft_id=info:pmid/&rfr_iscdi=true |