The magnetic field effect on the improvement of the binding reaction of C-reactive protein at the microfluidic channel surface of an SPR biosensor
This study is dedicated to a numerical investigation of the magnetic force effect on the kinetic response of an SPR biosensor for the detection of C-reactive protein. This force is produced thanks to the use of a permanent rectangular magnet situated on the wall of the microchannel. The present work...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2021-05, Vol.136 (5), p.608, Article 608 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 608 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Saad, Yosra Selmi, Marwa Gazzah, Mohamed Hichem Belmabrouk, Hafedh |
description | This study is dedicated to a numerical investigation of the magnetic force effect on the kinetic response of an SPR biosensor for the detection of C-reactive protein. This force is produced thanks to the use of a permanent rectangular magnet situated on the wall of the microchannel. The present work deals not only with a new geometry of a microchannel but it presents an innovative strategy based on the use of an external permanent magnetic magnet and magnetic nanoparticles (MNPs) dispersed in the fluid. The main objective is to improve the transport of particles in the vicinity of the sensitive membrane of a microchannel. The simulation is founded on the finite element method. The model has been validated using available literature. Then, a new geometrical configuration of the microchannel has been selected and a parametric study has been performed. The numerical results obtained successfully show the efficiency of the magnetic force and the MNPs to minimize the development of the diffusion boundary layer and subsequently improve the particles transport toward the reaction surface. A significant reduction in response time is obtained when an obstacle is involved inside the geometry and the external magnetic field is amplified by the application of two permanent magnets around the microchannel. |
doi_str_mv | 10.1140/epjp/s13360-021-01603-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919541584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919541584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a0922769cc9421013b44e6df359301fdb538109251960e7e96cd083577235dc63</originalsourceid><addsrcrecordid>eNqFkc1OAyEUhYnRxKb2GSRxjcLA_LA0jX9JE43WNaHMpaWZYSrMNPE1fGJpx0R3soF7-M69kIPQJaPXjAl6A7vt7iYyzgtKaMYIZQXlRJ6gScYkJbkQ4vTP-RzNYtzStIRkQooJ-lpuALd67aF3BlsHTY3BWjA97jzu06Vrd6HbQws-SfYorZyvnV_jANr0LnFJn5Ox2gNOfA_OY90f6daZ0NlmcHWaYDbae2hwHILVBg5O7fHby2tq2kXwsQsX6MzqJsLsZ5-i9_u75fyRLJ4fnua3C2I4Fz3RVGZZWUhjpMgYZXwlBBS15bnklNl6lfOKJSZnsqBQgixMTSuel2XG89oUfIquxr7pvR8DxF5tuyH4NFJlkslcsLwSiSpHKn0ixgBW7YJrdfhUjKpDBuqQgRozUCkDdcxAyeSsRmdMDr-G8Nv_P-s3Pj6NxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919541584</pqid></control><display><type>article</type><title>The magnetic field effect on the improvement of the binding reaction of C-reactive protein at the microfluidic channel surface of an SPR biosensor</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Saad, Yosra ; Selmi, Marwa ; Gazzah, Mohamed Hichem ; Belmabrouk, Hafedh</creator><creatorcontrib>Saad, Yosra ; Selmi, Marwa ; Gazzah, Mohamed Hichem ; Belmabrouk, Hafedh</creatorcontrib><description>This study is dedicated to a numerical investigation of the magnetic force effect on the kinetic response of an SPR biosensor for the detection of C-reactive protein. This force is produced thanks to the use of a permanent rectangular magnet situated on the wall of the microchannel. The present work deals not only with a new geometry of a microchannel but it presents an innovative strategy based on the use of an external permanent magnetic magnet and magnetic nanoparticles (MNPs) dispersed in the fluid. The main objective is to improve the transport of particles in the vicinity of the sensitive membrane of a microchannel. The simulation is founded on the finite element method. The model has been validated using available literature. Then, a new geometrical configuration of the microchannel has been selected and a parametric study has been performed. The numerical results obtained successfully show the efficiency of the magnetic force and the MNPs to minimize the development of the diffusion boundary layer and subsequently improve the particles transport toward the reaction surface. A significant reduction in response time is obtained when an obstacle is involved inside the geometry and the external magnetic field is amplified by the application of two permanent magnets around the microchannel.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01603-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Biosensors ; Boundary layers ; Complex Systems ; Condensed Matter Physics ; Diffusion layers ; Finite element method ; Flow velocity ; Ligands ; Magnetic fields ; Magnetism ; Mathematical and Computational Physics ; Microchannels ; Molecular ; Nanoparticles ; Optical and Plasma Physics ; Permanent magnets ; Physics ; Physics and Astronomy ; Proteins ; Regular Article ; Theoretical</subject><ispartof>European physical journal plus, 2021-05, Vol.136 (5), p.608, Article 608</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a0922769cc9421013b44e6df359301fdb538109251960e7e96cd083577235dc63</citedby><cites>FETCH-LOGICAL-c334t-a0922769cc9421013b44e6df359301fdb538109251960e7e96cd083577235dc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01603-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919541584?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Saad, Yosra</creatorcontrib><creatorcontrib>Selmi, Marwa</creatorcontrib><creatorcontrib>Gazzah, Mohamed Hichem</creatorcontrib><creatorcontrib>Belmabrouk, Hafedh</creatorcontrib><title>The magnetic field effect on the improvement of the binding reaction of C-reactive protein at the microfluidic channel surface of an SPR biosensor</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This study is dedicated to a numerical investigation of the magnetic force effect on the kinetic response of an SPR biosensor for the detection of C-reactive protein. This force is produced thanks to the use of a permanent rectangular magnet situated on the wall of the microchannel. The present work deals not only with a new geometry of a microchannel but it presents an innovative strategy based on the use of an external permanent magnetic magnet and magnetic nanoparticles (MNPs) dispersed in the fluid. The main objective is to improve the transport of particles in the vicinity of the sensitive membrane of a microchannel. The simulation is founded on the finite element method. The model has been validated using available literature. Then, a new geometrical configuration of the microchannel has been selected and a parametric study has been performed. The numerical results obtained successfully show the efficiency of the magnetic force and the MNPs to minimize the development of the diffusion boundary layer and subsequently improve the particles transport toward the reaction surface. A significant reduction in response time is obtained when an obstacle is involved inside the geometry and the external magnetic field is amplified by the application of two permanent magnets around the microchannel.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Biosensors</subject><subject>Boundary layers</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Diffusion layers</subject><subject>Finite element method</subject><subject>Flow velocity</subject><subject>Ligands</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Mathematical and Computational Physics</subject><subject>Microchannels</subject><subject>Molecular</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Permanent magnets</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Proteins</subject><subject>Regular Article</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkc1OAyEUhYnRxKb2GSRxjcLA_LA0jX9JE43WNaHMpaWZYSrMNPE1fGJpx0R3soF7-M69kIPQJaPXjAl6A7vt7iYyzgtKaMYIZQXlRJ6gScYkJbkQ4vTP-RzNYtzStIRkQooJ-lpuALd67aF3BlsHTY3BWjA97jzu06Vrd6HbQws-SfYorZyvnV_jANr0LnFJn5Ox2gNOfA_OY90f6daZ0NlmcHWaYDbae2hwHILVBg5O7fHby2tq2kXwsQsX6MzqJsLsZ5-i9_u75fyRLJ4fnua3C2I4Fz3RVGZZWUhjpMgYZXwlBBS15bnklNl6lfOKJSZnsqBQgixMTSuel2XG89oUfIquxr7pvR8DxF5tuyH4NFJlkslcsLwSiSpHKn0ixgBW7YJrdfhUjKpDBuqQgRozUCkDdcxAyeSsRmdMDr-G8Nv_P-s3Pj6NxQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Saad, Yosra</creator><creator>Selmi, Marwa</creator><creator>Gazzah, Mohamed Hichem</creator><creator>Belmabrouk, Hafedh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210501</creationdate><title>The magnetic field effect on the improvement of the binding reaction of C-reactive protein at the microfluidic channel surface of an SPR biosensor</title><author>Saad, Yosra ; Selmi, Marwa ; Gazzah, Mohamed Hichem ; Belmabrouk, Hafedh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a0922769cc9421013b44e6df359301fdb538109251960e7e96cd083577235dc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Biosensors</topic><topic>Boundary layers</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Diffusion layers</topic><topic>Finite element method</topic><topic>Flow velocity</topic><topic>Ligands</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Mathematical and Computational Physics</topic><topic>Microchannels</topic><topic>Molecular</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Permanent magnets</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Proteins</topic><topic>Regular Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saad, Yosra</creatorcontrib><creatorcontrib>Selmi, Marwa</creatorcontrib><creatorcontrib>Gazzah, Mohamed Hichem</creatorcontrib><creatorcontrib>Belmabrouk, Hafedh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saad, Yosra</au><au>Selmi, Marwa</au><au>Gazzah, Mohamed Hichem</au><au>Belmabrouk, Hafedh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The magnetic field effect on the improvement of the binding reaction of C-reactive protein at the microfluidic channel surface of an SPR biosensor</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>136</volume><issue>5</issue><spage>608</spage><pages>608-</pages><artnum>608</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This study is dedicated to a numerical investigation of the magnetic force effect on the kinetic response of an SPR biosensor for the detection of C-reactive protein. This force is produced thanks to the use of a permanent rectangular magnet situated on the wall of the microchannel. The present work deals not only with a new geometry of a microchannel but it presents an innovative strategy based on the use of an external permanent magnetic magnet and magnetic nanoparticles (MNPs) dispersed in the fluid. The main objective is to improve the transport of particles in the vicinity of the sensitive membrane of a microchannel. The simulation is founded on the finite element method. The model has been validated using available literature. Then, a new geometrical configuration of the microchannel has been selected and a parametric study has been performed. The numerical results obtained successfully show the efficiency of the magnetic force and the MNPs to minimize the development of the diffusion boundary layer and subsequently improve the particles transport toward the reaction surface. A significant reduction in response time is obtained when an obstacle is involved inside the geometry and the external magnetic field is amplified by the application of two permanent magnets around the microchannel.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01603-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-05, Vol.136 (5), p.608, Article 608 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919541584 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Applied and Technical Physics Atomic Biosensors Boundary layers Complex Systems Condensed Matter Physics Diffusion layers Finite element method Flow velocity Ligands Magnetic fields Magnetism Mathematical and Computational Physics Microchannels Molecular Nanoparticles Optical and Plasma Physics Permanent magnets Physics Physics and Astronomy Proteins Regular Article Theoretical |
title | The magnetic field effect on the improvement of the binding reaction of C-reactive protein at the microfluidic channel surface of an SPR biosensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20magnetic%20field%20effect%20on%20the%20improvement%20of%20the%20binding%20reaction%20of%20C-reactive%20protein%20at%20the%20microfluidic%20channel%20surface%20of%20an%20SPR%20biosensor&rft.jtitle=European%20physical%20journal%20plus&rft.au=Saad,%20Yosra&rft.date=2021-05-01&rft.volume=136&rft.issue=5&rft.spage=608&rft.pages=608-&rft.artnum=608&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01603-9&rft_dat=%3Cproquest_cross%3E2919541584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919541584&rft_id=info:pmid/&rfr_iscdi=true |