Predicting protein–protein interaction sites using modified support vector machine

Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2018-03, Vol.9 (3), p.393-398
Hauptverfasser: Guo, Hong, Liu, Bingjing, Cai, Danli, Lu, Tun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue 3
container_start_page 393
container_title International journal of machine learning and cybernetics
container_volume 9
creator Guo, Hong
Liu, Bingjing
Cai, Danli
Lu, Tun
description Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.
doi_str_mv 10.1007/s13042-015-0450-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919540749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919540749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLgsu4HeAt4Hu1OMo8cZfEFC3pQ8BaymcyaxZ0Zk4zgzX_wD_0SM8yiJ_vSDV1VXV2EnCKcI0B5EZCDYBlgnoHIISsOyAyrosoqqJ4Pf-cSj8kihC2kKoBzYDPy-OBt7Ux07Yb2vovWtd-fX_uJujZar9O2a2lw0QY6hBG562rXOFvTMPR95yN9tyZ2nu60eXGtPSFHjX4NdrHvc_J0ffW4vM1W9zd3y8tVZjgWMSsrubayFJIjN3kltdSNKNY51o00AnIhOOaVLXl6I5kFrTlazliJmtXADJ-Ts0k3-X0bbIhq2w2-TScVkyhzAaP4nOCEMr4LwdtG9d7ttP9QCGrMT035qZSfGvNTReKwiRMStt1Y_6f8P-kH1_BzYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919540749</pqid></control><display><type>article</type><title>Predicting protein–protein interaction sites using modified support vector machine</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Guo, Hong ; Liu, Bingjing ; Cai, Danli ; Lu, Tun</creator><creatorcontrib>Guo, Hong ; Liu, Bingjing ; Cai, Danli ; Lu, Tun</creatorcontrib><description>Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-015-0450-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Amino acids ; Artificial Intelligence ; Biological activity ; Classifiers ; Complex Systems ; Computational Intelligence ; Control ; Datasets ; Engineering ; Kernel functions ; Mathematical analysis ; Mechatronics ; Neural networks ; Original Article ; Particle swarm optimization ; Pattern Recognition ; Peptides ; Polynomials ; Proteins ; Robotics ; Support vector machines ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2018-03, Vol.9 (3), p.393-398</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</citedby><cites>FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-015-0450-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919540749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Guo, Hong</creatorcontrib><creatorcontrib>Liu, Bingjing</creatorcontrib><creatorcontrib>Cai, Danli</creatorcontrib><creatorcontrib>Lu, Tun</creatorcontrib><title>Predicting protein–protein interaction sites using modified support vector machine</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Artificial Intelligence</subject><subject>Biological activity</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Kernel functions</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Pattern Recognition</subject><subject>Peptides</subject><subject>Polynomials</subject><subject>Proteins</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMtKBDEQDKLgsu4HeAt4Hu1OMo8cZfEFC3pQ8BaymcyaxZ0Zk4zgzX_wD_0SM8yiJ_vSDV1VXV2EnCKcI0B5EZCDYBlgnoHIISsOyAyrosoqqJ4Pf-cSj8kihC2kKoBzYDPy-OBt7Ux07Yb2vovWtd-fX_uJujZar9O2a2lw0QY6hBG562rXOFvTMPR95yN9tyZ2nu60eXGtPSFHjX4NdrHvc_J0ffW4vM1W9zd3y8tVZjgWMSsrubayFJIjN3kltdSNKNY51o00AnIhOOaVLXl6I5kFrTlazliJmtXADJ-Ts0k3-X0bbIhq2w2-TScVkyhzAaP4nOCEMr4LwdtG9d7ttP9QCGrMT035qZSfGvNTReKwiRMStt1Y_6f8P-kH1_BzYA</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Guo, Hong</creator><creator>Liu, Bingjing</creator><creator>Cai, Danli</creator><creator>Lu, Tun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>Predicting protein–protein interaction sites using modified support vector machine</title><author>Guo, Hong ; Liu, Bingjing ; Cai, Danli ; Lu, Tun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Artificial Intelligence</topic><topic>Biological activity</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Kernel functions</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Pattern Recognition</topic><topic>Peptides</topic><topic>Polynomials</topic><topic>Proteins</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hong</creatorcontrib><creatorcontrib>Liu, Bingjing</creatorcontrib><creatorcontrib>Cai, Danli</creatorcontrib><creatorcontrib>Lu, Tun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hong</au><au>Liu, Bingjing</au><au>Cai, Danli</au><au>Lu, Tun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting protein–protein interaction sites using modified support vector machine</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>393</spage><epage>398</epage><pages>393-398</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-015-0450-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2018-03, Vol.9 (3), p.393-398
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919540749
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Algorithms
Amino acids
Artificial Intelligence
Biological activity
Classifiers
Complex Systems
Computational Intelligence
Control
Datasets
Engineering
Kernel functions
Mathematical analysis
Mechatronics
Neural networks
Original Article
Particle swarm optimization
Pattern Recognition
Peptides
Polynomials
Proteins
Robotics
Support vector machines
Systems Biology
title Predicting protein–protein interaction sites using modified support vector machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20protein%E2%80%93protein%20interaction%20sites%20using%20modified%20support%20vector%20machine&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Guo,%20Hong&rft.date=2018-03-01&rft.volume=9&rft.issue=3&rft.spage=393&rft.epage=398&rft.pages=393-398&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-015-0450-6&rft_dat=%3Cproquest_cross%3E2919540749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919540749&rft_id=info:pmid/&rfr_iscdi=true