Predicting protein–protein interaction sites using modified support vector machine
Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integra...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2018-03, Vol.9 (3), p.393-398 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 398 |
---|---|
container_issue | 3 |
container_start_page | 393 |
container_title | International journal of machine learning and cybernetics |
container_volume | 9 |
creator | Guo, Hong Liu, Bingjing Cai, Danli Lu, Tun |
description | Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods. |
doi_str_mv | 10.1007/s13042-015-0450-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919540749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919540749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLgsu4HeAt4Hu1OMo8cZfEFC3pQ8BaymcyaxZ0Zk4zgzX_wD_0SM8yiJ_vSDV1VXV2EnCKcI0B5EZCDYBlgnoHIISsOyAyrosoqqJ4Pf-cSj8kihC2kKoBzYDPy-OBt7Ux07Yb2vovWtd-fX_uJujZar9O2a2lw0QY6hBG562rXOFvTMPR95yN9tyZ2nu60eXGtPSFHjX4NdrHvc_J0ffW4vM1W9zd3y8tVZjgWMSsrubayFJIjN3kltdSNKNY51o00AnIhOOaVLXl6I5kFrTlazliJmtXADJ-Ts0k3-X0bbIhq2w2-TScVkyhzAaP4nOCEMr4LwdtG9d7ttP9QCGrMT035qZSfGvNTReKwiRMStt1Y_6f8P-kH1_BzYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919540749</pqid></control><display><type>article</type><title>Predicting protein–protein interaction sites using modified support vector machine</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Guo, Hong ; Liu, Bingjing ; Cai, Danli ; Lu, Tun</creator><creatorcontrib>Guo, Hong ; Liu, Bingjing ; Cai, Danli ; Lu, Tun</creatorcontrib><description>Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-015-0450-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Amino acids ; Artificial Intelligence ; Biological activity ; Classifiers ; Complex Systems ; Computational Intelligence ; Control ; Datasets ; Engineering ; Kernel functions ; Mathematical analysis ; Mechatronics ; Neural networks ; Original Article ; Particle swarm optimization ; Pattern Recognition ; Peptides ; Polynomials ; Proteins ; Robotics ; Support vector machines ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2018-03, Vol.9 (3), p.393-398</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</citedby><cites>FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-015-0450-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919540749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Guo, Hong</creatorcontrib><creatorcontrib>Liu, Bingjing</creatorcontrib><creatorcontrib>Cai, Danli</creatorcontrib><creatorcontrib>Lu, Tun</creatorcontrib><title>Predicting protein–protein interaction sites using modified support vector machine</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Artificial Intelligence</subject><subject>Biological activity</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Kernel functions</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Pattern Recognition</subject><subject>Peptides</subject><subject>Polynomials</subject><subject>Proteins</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMtKBDEQDKLgsu4HeAt4Hu1OMo8cZfEFC3pQ8BaymcyaxZ0Zk4zgzX_wD_0SM8yiJ_vSDV1VXV2EnCKcI0B5EZCDYBlgnoHIISsOyAyrosoqqJ4Pf-cSj8kihC2kKoBzYDPy-OBt7Ux07Yb2vovWtd-fX_uJujZar9O2a2lw0QY6hBG562rXOFvTMPR95yN9tyZ2nu60eXGtPSFHjX4NdrHvc_J0ffW4vM1W9zd3y8tVZjgWMSsrubayFJIjN3kltdSNKNY51o00AnIhOOaVLXl6I5kFrTlazliJmtXADJ-Ts0k3-X0bbIhq2w2-TScVkyhzAaP4nOCEMr4LwdtG9d7ttP9QCGrMT035qZSfGvNTReKwiRMStt1Y_6f8P-kH1_BzYA</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Guo, Hong</creator><creator>Liu, Bingjing</creator><creator>Cai, Danli</creator><creator>Lu, Tun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>Predicting protein–protein interaction sites using modified support vector machine</title><author>Guo, Hong ; Liu, Bingjing ; Cai, Danli ; Lu, Tun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-789be9749313c589a9af46b51df9c405443158e738083020aa31e32271a2d02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Artificial Intelligence</topic><topic>Biological activity</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Kernel functions</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Pattern Recognition</topic><topic>Peptides</topic><topic>Polynomials</topic><topic>Proteins</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hong</creatorcontrib><creatorcontrib>Liu, Bingjing</creatorcontrib><creatorcontrib>Cai, Danli</creatorcontrib><creatorcontrib>Lu, Tun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hong</au><au>Liu, Bingjing</au><au>Cai, Danli</au><au>Lu, Tun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting protein–protein interaction sites using modified support vector machine</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>393</spage><epage>398</epage><pages>393-398</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-015-0450-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2018-03, Vol.9 (3), p.393-398 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2919540749 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Algorithms Amino acids Artificial Intelligence Biological activity Classifiers Complex Systems Computational Intelligence Control Datasets Engineering Kernel functions Mathematical analysis Mechatronics Neural networks Original Article Particle swarm optimization Pattern Recognition Peptides Polynomials Proteins Robotics Support vector machines Systems Biology |
title | Predicting protein–protein interaction sites using modified support vector machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20protein%E2%80%93protein%20interaction%20sites%20using%20modified%20support%20vector%20machine&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Guo,%20Hong&rft.date=2018-03-01&rft.volume=9&rft.issue=3&rft.spage=393&rft.epage=398&rft.pages=393-398&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-015-0450-6&rft_dat=%3Cproquest_cross%3E2919540749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919540749&rft_id=info:pmid/&rfr_iscdi=true |